Quantum spectral clustering algorithm for unsupervised learning

被引:9
作者
Li, Qingyu [1 ]
Huang, Yuhan [1 ]
Jin, Shan [1 ]
Hou, Xiaokai [1 ]
Wang, Xiaoting [1 ]
机构
[1] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610051, Peoples R China
基金
国家重点研发计划;
关键词
quantum algorithm; machine learning; spectral clustering; quantum phase estimation; Grover's search; Hamiltonian simulation;
D O I
10.1007/s11432-022-3492-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Clustering is one of the most crucial problems in unsupervised learning, and the well-known k-means algorithm can be implemented on a quantum computer with a significant speedup. However, for the clustering problems that cannot be solved using the k-means algorithm, a powerful method called spectral clustering is used. In this study, we propose a circuit design to implement spectral clustering on a quantum processor with substantial speedup by initializing the processor into a maximally entangled state and encoding the data information into an efficiently simulatable Hamiltonian. Compared to the established quantum k-means algorithms, our method does not require a quantum random access memory or a quantum adiabatic process. It relies on an appropriate embedding of quantum phase estimation into Grover's search to gain the quantum speedup. Simulations demonstrate that our method effectively solves clustering problems and is an important supplement to quantum k-means algorithm for unsupervised learning.
引用
收藏
页数:10
相关论文
共 28 条
[1]   Quantum Boltzmann Machine [J].
Amin, Mohammad H. ;
Andriyash, Evgeny ;
Rolfe, Jason ;
Kulchytskyy, Bohdan ;
Melko, Roger .
PHYSICAL REVIEW X, 2018, 8 (02)
[2]  
[Anonymous], 2007, P 24 INT C MACH LEAR
[3]  
[Anonymous], 2009, J Mach Learn Res
[4]   Efficient quantum algorithms for simulating sparse Hamiltonians [J].
Berry, Dominic W. ;
Ahokas, Graeme ;
Cleve, Richard ;
Sanders, Barry C. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (02) :359-371
[5]   Quantum machine learning [J].
Biamonte, Jacob ;
Wittek, Peter ;
Pancotti, Nicola ;
Rebentrost, Patrick ;
Wiebe, Nathan ;
Lloyd, Seth .
NATURE, 2017, 549 (7671) :195-202
[6]  
Brassard G, 1998, LECT NOTES COMPUT SC, V1443, P820, DOI 10.1007/BFb0055105
[7]  
Daskin A, 2020, TWMS J APPL ENG MATH, V10, P24
[8]   Quantum reinforcement learning [J].
Dong, Daoyi ;
Chen, Chunlin ;
Li, Hanxiong ;
Tarn, Tzyh-Jong .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2008, 38 (05) :1207-1220
[9]  
Farhi E, 2000, arXiv:quant-ph/0001106
[10]   Quantum random access memory [J].
Giovannetti, Vittorio ;
Lloyd, Seth ;
Maccone, Lorenzo .
PHYSICAL REVIEW LETTERS, 2008, 100 (16)