Decoding of Interleaved Alternant Codes

被引:1
作者
Holzbaur, Lukas [1 ]
Liu, Hedongliang [1 ]
Neri, Alessandro [2 ]
Puchinger, Sven [1 ]
Rosenkilde, Johan [3 ]
Sidorenko, Vladimir [1 ]
Wachter-Zeh, Antonia [1 ]
机构
[1] Tech Univ Munich TUM, Inst Commun Engn, D-80333 Munich, Germany
[2] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[3] GitHub Inc, San Francisco, CA 94107 USA
基金
欧盟地平线“2020”; 瑞士国家科学基金会; 欧洲研究理事会;
关键词
Codes; Decoding; Interleaved codes; Ash; Cryptography; Upper bound; Europe; alternant codes; BCH codes; Goppa Codes; collaborative decoding; success probability; REED-SOLOMON CODES; ERROR-CORRECTION; ALGORITHM;
D O I
10.1109/TIT.2021.3115432
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Interleaved Reed-Solomon codes admit efficient decoding algorithms which correct burst errors far beyond half the minimum distance in the random errors regime, e.g., by computing a common solution to the Key Equation for each Reed-Solomon code, as described by Schmidt et al. If this decoder does not succeed, it may either fail to return a codeword or miscorrect to an incorrect codeword, and good upper bounds on the fraction of error matrices for which these events occur are known. The decoding algorithm immediately applies to interleaved alternant codes as well, i.e., the subfield subcodes of interleaved Reed-Solomon codes, but the fraction of decodable error matrices differs, since the error is now restricted to a subfield. In this paper, we present new general lower and upper bounds on the fraction of error matrices decodable by Schmidt et al.'s decoding algorithm, thereby making it the only decoding algorithm for interleaved alternant codes for which such bounds are known.
引用
收藏
页码:8016 / 8033
页数:18
相关论文
共 63 条
[1]  
[Anonymous], 1959, CHIFFRES
[2]  
[Anonymous], 2018, ARXIV180903024
[3]  
[Anonymous], 1972, Error-Correcting Codes
[4]  
[Anonymous], 2006, IET Communications
[5]  
Augot D., 2011, IEEE Information Theory Workshop (ITW 2011), P229, DOI 10.1109/ITW.2011.6089384
[6]  
Bassalygo L.A., 1965, Problemy. Peredai. Informacii, V1, P41
[7]   On Rational Interpolation-Based List-Decoding and List-Decoding Binary Goppa Codes [J].
Beelen, Peter ;
Hoholdt, Tom ;
Nielsen, Johan S. R. ;
Wu, Yingquan .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (06) :3269-3281
[8]   GOPPA CODES [J].
BERLEKAMP, ER .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1973, 19 (05) :590-592
[9]  
Bernstein DJ, 2011, LECT NOTES COMPUT SC, V6544, P143, DOI 10.1007/978-3-642-19574-7_10
[10]  
Bleichenbacher D, 2003, LECT NOTES COMPUT SC, V2719, P97