Temperature dependence of graphene oxide reduced by hydrazine hydrate

被引:621
作者
Ren, Peng-Gang [1 ]
Yan, Ding-Xiang [2 ]
Ji, Xu [3 ]
Chen, Tao [4 ]
Li, Zhong-Ming [2 ]
机构
[1] Xian Univ Technol, Inst Printing & Packaging Engn, Xian 710048, Shaanxi, Peoples R China
[2] Sichuan Univ, State Key Lab Polymer Mat Engn, Coll Polymer Sci & Engn, Chengdu 610065, Sichuan, Peoples R China
[3] Sichuan Univ, Coll Chem Engn, Chengdu 610065, Peoples R China
[4] Univ Elect Sci & Technol China, Vacuum Elect Natl Lab, Sch Phys Elect, Chengdu 610054, Peoples R China
关键词
GRAPHITE OXIDE; ORGANIC-SOLVENTS; SHEETS; FILMS; DISPERSIONS; COMPOSITES; NANOSHEETS; REDUCTION; LAYER;
D O I
10.1088/0957-4484/22/5/055705
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Graphene oxide (GO) was successfully prepared by a modified Hummer's method. The reduction effect and mechanism of the as-prepared GO reduced with hydrazine hydrate at different temperatures and time were characterized by x-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA), x-ray diffractions (XRD), Raman spectroscopy and thermo-gravimetric analysis (TGA). The results showed that the reduction effect of GO mainly depended on treatment temperature instead of treatment time. Desirable reduction of GO can only be obtained at high treatment temperature. Reduced at 95 degrees C for 3 h, the C/O atomic ratio of GO increased from 3.1 to 15.1, which was impossible to obtain at low temperatures, such as 80, 60 or 15 degrees C, even for longer reduction time. XPS, 13C NMR and FTIR results show that most of the epoxide groups bonded to graphite during the oxidation were removed from GO and form the sp(2) structure after being reduced by hydrazine hydrate at high temperature (>60 degrees C), leading to the electric conductivity of GO increasing from 1.5 x 10 (6) to 5 S cm(-1), while the hydroxyls on the surface of GO were not removed by hydrazine hydrate even at high temperature. Additionally, the FTIR, XRD and Raman spectrum indicate that the GO reduced by hydrazine hydrate can not be entirely restored to the pristine graphite structures. XPS and FTIR data also suggest that carbonyl and carboxyl groups can be reduced by hydrazine hydrate and possibly form hydrazone, but not a C=C structure.
引用
收藏
页数:8
相关论文
共 31 条
[1]   Modeling of graphite oxide [J].
Boukhvalov, D. W. ;
Katsnelson, M. I. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (32) :10697-10701
[2]   Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide [J].
Cai, Weiwei ;
Piner, Richard D. ;
Stadermann, Frank J. ;
Park, Sungjin ;
Shaibat, Medhat A. ;
Ishii, Yoshitaka ;
Yang, Dongxing ;
Velamakanni, Aruna ;
An, Sung Jin ;
Stoller, Meryl ;
An, Jinho ;
Chen, Dongmin ;
Ruoff, Rodney S. .
SCIENCE, 2008, 321 (5897) :1815-1817
[3]   Preparation and characterization of graphene oxide paper [J].
Dikin, Dmitriy A. ;
Stankovich, Sasha ;
Zimney, Eric J. ;
Piner, Richard D. ;
Dommett, Geoffrey H. B. ;
Evmenenko, Guennadi ;
Nguyen, SonBinh T. ;
Ruoff, Rodney S. .
NATURE, 2007, 448 (7152) :457-460
[4]   Graphene-based Composite Thin Films for Electronics [J].
Eda, Goki ;
Chhowalla, Manish .
NANO LETTERS, 2009, 9 (02) :814-818
[5]   Field emission from graphene based composite thin films [J].
Eda, Goki ;
Unalan, H. Emrah ;
Rupesinghe, Nalin ;
Amaratunga, Gehan A. J. ;
Chhowalla, Manish .
APPLIED PHYSICS LETTERS, 2008, 93 (23)
[6]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[7]   A new structural model for graphite oxide [J].
He, HY ;
Klinowski, J ;
Forster, M ;
Lerf, A .
CHEMICAL PHYSICS LETTERS, 1998, 287 (1-2) :53-56
[8]   Preparation and properties of graphene nanosheets-polystyrene nanocomposites via in situ emulsion polymerization [J].
Hu, Huating ;
Wang, Xianbao ;
Wang, Jingchao ;
Wan, Li ;
Liu, Fangming ;
Zheng, Han ;
Chen, Rong ;
Xu, Chunhui .
CHEMICAL PHYSICS LETTERS, 2010, 484 (4-6) :247-253
[9]   Electrical Conductivity of Graphene Films with a Poly(allylamine hydrochloride) Supporting Layer [J].
Kong, Byung-Seon ;
Yoo, Hae-Wook ;
Jung, Hee-Tae .
LANGMUIR, 2009, 25 (18) :11008-11013
[10]   Graphitic cones and the nucleation of curved carbon surfaces [J].
Krishnan, A ;
Dujardin, E ;
Treacy, MMJ ;
Hugdahl, J ;
Lynum, S ;
Ebbesen, TW .
NATURE, 1997, 388 (6641) :451-454