On the existence of a maximum number of periodical solutions of a class of autonomous systems

被引:0
作者
Raeva, M. [1 ]
机构
[1] Tech Univ Sofia, Sofia 1000, Bulgaria
来源
Applications of Mathematics in Engineering and Economics '33 | 2007年 / 946卷
关键词
autonomous systems; limit cycle; periodical trajectory;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The autonomous systems (1) are investigated on the condition (4), assuming the existence of inner resonances. Nonlinear parts are polynomials of a certain class. We are interested both in the existence and the number of periodical trajectories of the system (1) with initial conditions (6).
引用
收藏
页码:235 / 243
页数:9
相关论文
共 12 条
[1]  
Amelkin VV, 1982, Nonlinear oscillations in second order systems
[2]  
Bradistilov G., 1956, GOD VUZ, V2, P2
[3]  
CARNEGIE W, 1969, CENTRUFUGAL COMPOUND, V6, P423
[4]  
Kurosh, 1965, COURSE HIGHER ALGEBR
[5]  
MANOLOV S, 1974, GOD VUZ APPL MATH, V10, P19
[6]  
RAEVA M, 1990, COLLOQ MATH SOC J B, V53, P553
[7]  
RAEVA M, 1999, MATH BALKANICA NEW S, V13, P213
[8]  
RAEVA M, 1979, GOD VUZ APPL MATH, V2, P59
[9]  
RAEVA M, 1976, GOD VUZ APPL MATH, V12, P109
[10]  
RAEVA M, 1998, COMPT REND ACAD BULG, V51, P16