Bifurcation and Chaos of a Discrete Predator-Prey Model with Crowley-Martin Functional Response Incorporating Proportional Prey Refuge

被引:26
作者
Santra, P. K. [1 ]
Mahapatra, G. S. [2 ]
Phaijoo, G. R. [3 ]
机构
[1] Maulana Abul Kalam Azad Univ Technol, Kolkata 700064, India
[2] Natl Inst Technol Puducherry, Dept Math, Karaikal 609609, India
[3] Kathmandu Univ, Dept Math, Dhulikhel 45200, Nepal
关键词
SYSTEM; STABILITY; DYNAMICS; EVOLUTION; FOOD;
D O I
10.1155/2020/5309814
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The paper investigates the dynamical behaviors of a two-species discrete predator-prey system with Crowley-Martin functional response incorporating prey refuge proportional to prey density. The existence of equilibrium points, stability of three fixed points, period-doubling bifurcation, Neimark-Sacker bifurcation, Marottos chaos, and Control Chaos are analyzed for the discrete-time domain. The time graphs, phase portraits, and bifurcation diagrams are obtained for different parameters of the model. Numerical simulations and graphics show that the discrete model exhibits rich dynamics, which also present that the system is a chaotic and complex one. This paper attempts to present a feedback control method which can stabilize chaotic orbits at an unstable equilibrium point.
引用
收藏
页数:18
相关论文
共 49 条
[1]  
Anderson TW, 2001, ECOLOGY, V82, P245
[2]   Complex Dynamics of a Discrete-Time Predator-Prey System with Ivlev Functional Response [J].
Baek, Hunki .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018
[3]   THE ORIGINS AND EVOLUTION OF PREDATOR PREY THEORY [J].
BERRYMAN, AA .
ECOLOGY, 1992, 73 (05) :1530-1535
[4]   Allee effect in a discrete-time predator-prey system [J].
Celik, Canan ;
Duman, Oktay .
CHAOS SOLITONS & FRACTALS, 2009, 40 (04) :1956-1962
[5]   On a Leslie-Gower predator-prey model incorporating a prey refuge [J].
Chen, Fengde ;
Chen, Liujuan ;
Xie, Xiangdong .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (05) :2905-2908
[6]   A predator-prey refuge system: Evolutionary stability in ecological systems [J].
Cressman, Ross ;
Garay, Jozsef .
THEORETICAL POPULATION BIOLOGY, 2009, 76 (04) :248-257
[7]  
Din Q., 2013, ADV DIFFER EQU, V2013, P1, DOI DOI 10.1186/1687-1847-2013-95
[8]  
Elsadany Abd-Elalim A., 2012, Computational Ecology and Software, V2, P124
[9]  
Fan R. N., 2015, APPL MECH MAT, V713, P1534, DOI DOI 10.4028/WWW.SCIENTIFIC.NET/AMM.713-715.1534
[10]   Ecological monitoring in a discrete-time prey-predator model [J].
Gamez, M. ;
Lopez, I. ;
Rodriguez, C. ;
Varga, Z. ;
Garay, J. .
JOURNAL OF THEORETICAL BIOLOGY, 2017, 429 :52-60