Zero-baseline Analysis of GPS/BeiDou/Galileo Between-Receiver Differential Code Biases (BR-DCBs): Time-wise Retrieval and Preliminary Characterization

被引:15
作者
Zhang, B. [1 ]
Teunissen, P. J. G. [2 ,3 ]
机构
[1] Curtin Univ, GNSS Res Ctr, Perth, WA, Australia
[2] Curtin Univ, Perth, WA, Australia
[3] Delft Univ Technol, NL-2600 AA Delft, Netherlands
来源
NAVIGATION-JOURNAL OF THE INSTITUTE OF NAVIGATION | 2016年 / 63卷 / 02期
基金
澳大利亚研究理事会;
关键词
GPS INSTRUMENTAL BIAS; SATELLITE; CALIBRATION; ACCURACY; BDS;
D O I
10.1002/navi.132
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
When sensing Earth's ionosphere using multiple Global Navigation Satellite Systems (GNSSs), special care needs to be taken with the receiver differential code bias (DCB) contributions to the error budget. We propose a method that is able to time-wisely retrieve the Between-Receiver DCBs (BR-DCBs) from code measurements collected by a zero-baseline setup, thereby eliminating most common error sources. We base our investigations on dual-frequency GPS (L1+L2), BeiDou (B1+B2), and Galileo (E1+E5a) measurements collected in 2013 with a 30second sampling rate by four multi-GNSS receivers of three types connected to one common antenna. For each receiver-pair, we determine the time-wise estimates of GPS/GEO/IGSO/MEO/Galileo BR-DCBs from the corresponding code measurements. We confirm that (1) the time-wise estimates of BR-DCBs for all tested receiver-pairs exhibit good intra-day stability and (2) the daily weighted average (DWA) estimates of GEO/IGSO/MEO BR-DCBs are inconsistent for receiver-pairs of mixed type, due to the presence of BeiDou code inter-satellite-type biases (ISTBs). We also identify likely factors accounting for variability in DWA estimates of BR-DCBs over a one-year interval. Copyright (C) 2016 Institute of Navigation
引用
收藏
页码:181 / 191
页数:11
相关论文
共 41 条
[1]   Global and Regional Ionospheric Corrections for Faster PPP Convergence [J].
Banville, Simon ;
Collins, Paul ;
Zhang, Wei ;
Langley, Richard B. .
NAVIGATION-JOURNAL OF THE INSTITUTE OF NAVIGATION, 2014, 61 (02) :115-124
[2]  
Bartolomé JP, 2015, SIGNALS COMMUN TECHN, V182, P9, DOI 10.1007/978-94-007-1830-2_2
[3]   GPS slant total electron content accuracy using the single layer model under different geomagnetic regions and ionospheric conditions [J].
Brunini, C. ;
Azpilicueta, F. .
JOURNAL OF GEODESY, 2010, 84 (05) :293-304
[4]   Accuracy assessment of the GPS-based slant total electron content [J].
Brunini, Claudio ;
Javier Azpilicueta, Francisco .
JOURNAL OF GEODESY, 2009, 83 (08) :773-785
[5]  
Bruyninx C, 1999, GPS SOLUT, V3, P1, DOI 10.1007/PL00012772
[6]  
Choi BK, 2013, EARTH PLANETS SPACE, V65, P707, DOI [10.5047/eps.2012.10003, 10.5047/eps.2012.10.003]
[7]   Calibration errors on experimental slant total electron content (TEC) determined with GPS [J].
Ciraolo, L. ;
Azpilicueta, F. ;
Brunini, C. ;
Meza, A. ;
Radicella, S. M. .
JOURNAL OF GEODESY, 2007, 81 (02) :111-120
[8]   VARIABILITY OF GPS SATELLITE DIFFERENTIAL GROUP DELAY BIASES [J].
COCO, DS ;
COKER, C ;
DAHLKE, SR ;
CLYNCH, JR .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1991, 27 (06) :931-938
[9]   Accuracy of GPS total electron content: GPS receiver bias temperature dependence [J].
Coster, A. ;
Williams, J. ;
Weatherwax, A. ;
Rideout, W. ;
Herne, D. .
RADIO SCIENCE, 2013, 48 (02) :190-196
[10]   Short and zero baseline analysis of GPS L1 C/A, L5Q, GIOVE E1B, and E5aQ signals [J].
de Bakker, Peter F. ;
Tiberius, Christian C. J. M. ;
van der Marel, Hans ;
van Bree, Roel J. P. .
GPS SOLUTIONS, 2012, 16 (01) :53-64