Unsupervised Classification of SAR Images Using Markov Random Fields and GI0 Model

被引:18
作者
Picco, Mery [1 ]
Palacio, Gabriela [1 ]
机构
[1] Univ Nacl Rio Cuarto, RA-5800 Rio Cuarto, Argentina
关键词
Classification; Markovian segmentation; statistical model; synthetic aperture radar (SAR); DISTRIBUTIONS; ESTIMATORS;
D O I
10.1109/LGRS.2010.2073678
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This letter deals with synthetic aperture radar (SAR) data classification in an unsupervised way. Many models have been proposed to fit SAR data (K, Weibull, Log-normal, etc.), but none of them are flexible enough to model all kinds of surfaces (particularly when there are urban areas present in the image). Our main contribution is the application of a statistical model G(0) in a classification process which is shown to be able to model areas with different degrees of heterogeneity. The quality of the classification obtained by mixing this model and a Markovian segmentation is high. We use an iterative conditional estimation method to estimate the parameters of the proposed model.
引用
收藏
页码:350 / 353
页数:4
相关论文
共 20 条
[1]   M-estimators with asymmetric influence functions:: the GA0 distribution case [J].
Allende, Hector ;
Frery, Alejandro C. ;
Galbiati, Jorge ;
Pizarro, Luis .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2006, 76 (11) :941-956
[2]  
Benboudjema D, 2007, INT GEOSCI REMOTE SE, P3891
[3]  
BUSTOS OH, 1998, REBRAPE, V12, P149
[4]   IMAGE-PROCESSING BY SIMULATED ANNEALING [J].
CARNEVALI, P ;
COLETTI, L ;
PATARNELLO, S .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1985, 29 (06) :569-579
[5]   THE IMPACT OF STRONG SCINTILLATION ON SPACE BASED RADAR DESIGN .2. NONCOHERENT DETECTION [J].
DANA, RA ;
KNEPP, DL .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1986, 22 (01) :34-46
[6]   Unsupervised classification of radar images using hidden Markov chains and hidden Markov random fields [J].
Fjortoft, R ;
Delignon, Y ;
Pieczynski, W ;
Sigelle, M ;
Tupin, F .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (03) :675-686
[7]   STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND THE BAYESIAN RESTORATION OF IMAGES [J].
GEMAN, S ;
GEMAN, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (06) :721-741
[8]   MODEL FOR NON-RAYLEIGH SEA ECHO [J].
JAKEMAN, E ;
PUSEY, PN .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1976, 24 (06) :806-814
[9]   Pseudo-likelihood equations for Potts model on higher-order neighborhood systems: A quantitative approach for parameter estimation in image analysis [J].
Levada, Alexandre L. M. ;
Mascarenhas, Nelson D. A. ;
Tannus, Alberto .
BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2009, 23 (02) :120-140
[10]  
LOPES A, 1990, P IEEE INT GEOSC REM, P2427