Expanding the applicability of secant-like methods for solving nonlinear equations

被引:0
|
作者
Argyros, I. K. [1 ]
Ezquerro, J. A. [2 ]
Hernandez, M. A. [2 ]
Hilout, S. [3 ]
Romero, N. [2 ]
Velasco, A. I. [2 ]
机构
[1] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
[2] Univ La Rioja, Dept Math & Computat, Logrono 26004, Spain
[3] Univ Poitiers, Lab Math & Applicat, F-86962 Poitiers, France
关键词
Banach space; Secant-like methods; Newton's method; the secant method; majorizing sequence; semilocal convergence; divided difference operator; Frechet-derivative; SEMILOCAL CONVERGENCE ANALYSIS; NEWTON-LIKE METHODS; POINTS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use the method of recurrent functions to provide a new semilocal convergence analysis for secant-like methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Our sufficient convergence criteria are weaker than in earlier studies such as [18, 19, 20, 21, 25, 26]. Therefore, the new approach has a larger convergence domain and uses the same constants. A numerical example involving a nonlinear integral equation of mixed Hammerstein type is given to illustrate the advantages of the new approach. Another example of nonlinear integral equations is presented to show that the old convergence criteria are not satisfied but the new convergence are satisfied.
引用
收藏
页码:11 / 30
页数:20
相关论文
共 50 条
  • [21] Influence of symmetric first-order divided differences on Secant-like methods
    Hernandez-Veron, M. A.
    Hueso, JOSe . L.
    Martinez, Eulalia
    CARPATHIAN JOURNAL OF MATHEMATICS, 2024, 40 (01) : 47 - 64
  • [22] Local convergence of efficient Secant-type methods for solving nonlinear equations
    Ren, Hongmin
    Argyros, I. K.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (14) : 7655 - 7664
  • [23] On Extending the Applicability of Iterative Methods for Solving Systems of Nonlinear Equations
    Bate, Indra
    Murugan, Muniyasamy
    George, Santhosh
    Senapati, Kedarnath
    Argyros, Ioannis K.
    Regmi, Samundra
    AXIOMS, 2024, 13 (09)
  • [24] ENLARGING THE BALL OF CONVERGENCE OF SECANT-LIKE METHODS FOR NON-DIFFERENTIABLE OPERATORS
    Argyros, Toannis K.
    Ren, Hongmin
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (01) : 17 - 28
  • [25] Generalized g-Fractional Calculus of Canavati-Type and Secant-Like Methods
    Anastassiou G.A.
    Argyros I.K.
    International Journal of Applied and Computational Mathematics, 2017, 3 (3) : 1605 - 1617
  • [26] Multipoint secant and interpolation methods with nonmonotone line search for solving systems of nonlinear equations
    Burdakov, Oleg
    Kamandi, Ahmad
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 338 : 421 - 431
  • [27] STABLE VARIANT OF SECANT METHOD FOR SOLVING NONLINEAR EQUATIONS
    GRAGG, WB
    STEWART, GW
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (06) : 889 - 903
  • [28] Improving the applicability of the secant method to solve nonlinear systems of equations
    Amat, S.
    Hernandez-Veron, M. A.
    Rubio, M. J.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 247 : 741 - 752
  • [29] On Newton-Like Methods for Solving Nonlinear Equations
    Kou Jisheng
    Liu Dingyou
    Li Yitian
    He Julin
    GEO-SPATIAL INFORMATION SCIENCE, 2006, 9 (01) : 76 - 78
  • [30] On Newton-Like Methods for Solving Nonlinear Equations
    LIU Dingyou LI Yitian HE Julin KOU Jisheng
    Geo-Spatial Information Science, 2006, (01) : 76 - 78