On a simple scheme for computing the electronic energy levels of a finite system from those of the corresponding infinite system

被引:3
作者
Ajoy, Arvind [1 ]
Karmalkar, Shreepad [1 ]
机构
[1] Indian Inst Technol, Dept Elect Engn, Madras 600036, Tamil Nadu, India
关键词
STATES;
D O I
10.1088/0953-8984/22/43/435502
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Computing the electronic energy levels of a finite system or nanostructure is more difficult than computing those of an infinite system or bulk material. In the literature, a technique for simplifying this computation has been proposed, wherein energy levels of a finite system are derived from those of the corresponding infinite system. So far, this method has been validated only for finite length one-dimensional systems and for higher-dimensional systems at k = 0. We establish that this technique, hereafter referred to as the confined Bloch wave (CBW) method, is valid for higher-dimensional symmorphic systems over the entire Brillouin zone, provided some symmetry requirements are satisfied. For this purpose we use a lateral surface superlattice as a model for the infinite system and a stripe or ribbon patterned in this superlattice as a model for the nanostructure. Finally, we compute the subbands of zigzag ribbons of one type patterned in artificial graphene and show that the CBW method predicts all the important subbands in these ribbons, and provides additional insight into the nature of their wavefunctions.
引用
收藏
页数:11
相关论文
共 24 条
  • [1] OBSERVATION OF NEGATIVE DIFFERENTIAL CONDUCTIVITY IN A FET WITH STRUCTURED GATE
    BERNSTEIN, G
    FERRY, DK
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1987, 67 (04): : 449 - 452
  • [2] Practical application of zone-folding concepts in tight-binding calculations
    Boykin, TB
    Klimeck, G
    [J]. PHYSICAL REVIEW B, 2005, 71 (11)
  • [3] Allowed wavevectors under the application of incommensurate periodic boundary conditions
    Boykin, TB
    Kharche, N
    Klimeck, G
    [J]. EUROPEAN JOURNAL OF PHYSICS, 2006, 27 (01) : 5 - 10
  • [4] Approximate bandstructures of semiconductor alloys from tight-binding supercell calculations
    Boykin, Timothy B.
    Kharche, Neerav
    Klimeck, Gerhard
    Korkusinski, Marek
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (03)
  • [5] Non-primitive rectangular cells for tight-binding electronic structure calculations
    Boykin, Timothy B.
    Kharche, Neerav
    Klimeck, Gerhard
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2009, 41 (03) : 490 - 494
  • [6] Dresselhaus M.S., 2008, Group theory: Application to the physics of condensed matter
  • [7] Linear combination of bulk bands method for investigating the low-dimensional electron gas in nanostructured devices
    Esseni, D
    Palestri, P
    [J]. PHYSICAL REVIEW B, 2005, 72 (16)
  • [8] GEUZAINE C, GMSH 2 4 2
  • [9] Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities
    Geuzaine, Christophe
    Remacle, Jean-Francois
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 79 (11) : 1309 - 1331
  • [10] Engineering artificial graphene in a two-dimensional electron gas
    Gibertini, Marco
    Singha, Achintya
    Pellegrini, Vittorio
    Polini, Marco
    Vignale, Giovanni
    Pinczuk, Aron
    Pfeiffer, Loren N.
    West, Ken W.
    [J]. PHYSICAL REVIEW B, 2009, 79 (24):