Inkjet printing of palladium alkanethiolates for facile fabrication of metal interconnects and surface-enhanced Raman scattering substrates

被引:18
作者
Bhuvana, T. [3 ]
Boley, W. [4 ]
Radha, B. [1 ,2 ]
Dolash, B. D. [5 ]
Chiu, G. [4 ]
Bergstrom, D. [5 ]
Reifenberger, R. [3 ,6 ]
Fisher, T. S. [3 ,4 ]
Kulkarni, G. U. [1 ,2 ]
机构
[1] Jawaharlal Nehru Ctr Adv Sci Res, Chem & Phys Mat Unit, Bangalore 560064, Karnataka, India
[2] Jawaharlal Nehru Ctr Adv Sci Res, DST Unit Nanosci, Bangalore 560064, Karnataka, India
[3] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[4] Purdue Univ, Purdue Sch Mech Engn, W Lafayette, IN 47907 USA
[5] Purdue Univ, Dept Med Chem & Mol Pharmacol, W Lafayette, IN 47907 USA
[6] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA
来源
MICRO & NANO LETTERS | 2010年 / 5卷 / 05期
关键词
BEAM-INDUCED METALLIZATION; CATALYST PATTERNS; PD; DEVICES; FILM; AG;
D O I
10.1049/mnl.2010.0109
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Pd hexadecanethiolate and Pd butanethiolate precursors were patterned using inkjet printing techniques to form metallic Pd interconnects upon thermolysis. Patterns with lateral dimensions of similar to 50 mu m were produced. The surface morphology of the Pd interconnects was examined using scanning electron microscopy. By printing four-probe patterns, the resistance as a function of the precursor concentration was determined, allowing estimates for the resistivity of the printed interconnects. To demonstrate the utility of this fabrication approach, an electronic circuit consisting of single-wall carbon nanotubes was inkjet printed and then contacted with Pd pads. These printed patterns have also been applied as surface-enhanced Raman scattering substrates that exhibit high sensitivity.
引用
收藏
页码:296 / 299
页数:4
相关论文
共 23 条
  • [1] Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes
    Ahn, Bok Y.
    Duoss, Eric B.
    Motala, Michael J.
    Guo, Xiaoying
    Park, Sang-Il
    Xiong, Yujie
    Yoon, Jongseung
    Nuzzo, Ralph G.
    Rogers, John A.
    Lewis, Jennifer A.
    [J]. SCIENCE, 2009, 323 (5921) : 1590 - 1593
  • [2] Electrical sintering of nanoparticle structures
    Allen, Mark L.
    Aronniemi, Mikko
    Mattila, Tomi
    Alastalo, Ari
    Ojanpera, Kimmo
    Suhonen, Mika
    Seppa, Heikki
    [J]. NANOTECHNOLOGY, 2008, 19 (17)
  • [3] Highly conducting patterned Pd nanowires by direct-write electron beam lithography
    Bhuvana, T.
    Kulkarni, G. U.
    [J]. ACS NANO, 2008, 2 (03) : 457 - 462
  • [4] A SERS-activated nanocrystalline Pd substrate and its nanopatterning leading to biochip fabrication
    Bhuvana, Thiruvelu
    Kulkarni, Giridhar U.
    [J]. SMALL, 2008, 4 (05) : 670 - 676
  • [5] Ink-jet fabrication of electronic components
    Bidoki, S. M.
    Lewis, D. M.
    Clark, M.
    Vakorov, A.
    Millner, P. A.
    McGorman, D.
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2007, 17 (05) : 967 - 974
  • [6] Microstructuring by printing and laser curing of nanoparticle solutions
    Bieri, NR
    Chung, J
    Haferl, SE
    Poulikakos, D
    Grigoropoulos, CP
    [J]. APPLIED PHYSICS LETTERS, 2003, 82 (20) : 3529 - 3531
  • [7] Inkjet printing of palladium catalyst patterns on polyimide film for electroless copper plating
    Busato, Stephan
    Belloli, Alberto
    Ermanni, Paolo
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2007, 123 (02) : 840 - 846
  • [8] Inkjet printing for materials and devices
    Calvert, P
    [J]. CHEMISTRY OF MATERIALS, 2001, 13 (10) : 3299 - 3305
  • [9] Inkjet-printed gold nanoparticle chemiresistors: Influence of film morphology and ionic strength on the detection of organics dissolved in aqueous solution
    Chow, Edith
    Herrmann, Jan
    Barton, Christopher S.
    Raguse, Burkhard
    Wieczorek, Lech
    [J]. ANALYTICA CHIMICA ACTA, 2009, 632 (01) : 135 - 142
  • [10] Ink-jet printed nanoparticle microelectromechanical systems
    Fuller, SB
    Wilhelm, EJ
    Jacobson, JM
    [J]. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2002, 11 (01) : 54 - 60