Inkjet printing of palladium alkanethiolates for facile fabrication of metal interconnects and surface-enhanced Raman scattering substrates

被引:18
作者
Bhuvana, T. [3 ]
Boley, W. [4 ]
Radha, B. [1 ,2 ]
Dolash, B. D. [5 ]
Chiu, G. [4 ]
Bergstrom, D. [5 ]
Reifenberger, R. [3 ,6 ]
Fisher, T. S. [3 ,4 ]
Kulkarni, G. U. [1 ,2 ]
机构
[1] Jawaharlal Nehru Ctr Adv Sci Res, Chem & Phys Mat Unit, Bangalore 560064, Karnataka, India
[2] Jawaharlal Nehru Ctr Adv Sci Res, DST Unit Nanosci, Bangalore 560064, Karnataka, India
[3] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[4] Purdue Univ, Purdue Sch Mech Engn, W Lafayette, IN 47907 USA
[5] Purdue Univ, Dept Med Chem & Mol Pharmacol, W Lafayette, IN 47907 USA
[6] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA
关键词
BEAM-INDUCED METALLIZATION; CATALYST PATTERNS; PD; DEVICES; FILM; AG;
D O I
10.1049/mnl.2010.0109
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Pd hexadecanethiolate and Pd butanethiolate precursors were patterned using inkjet printing techniques to form metallic Pd interconnects upon thermolysis. Patterns with lateral dimensions of similar to 50 mu m were produced. The surface morphology of the Pd interconnects was examined using scanning electron microscopy. By printing four-probe patterns, the resistance as a function of the precursor concentration was determined, allowing estimates for the resistivity of the printed interconnects. To demonstrate the utility of this fabrication approach, an electronic circuit consisting of single-wall carbon nanotubes was inkjet printed and then contacted with Pd pads. These printed patterns have also been applied as surface-enhanced Raman scattering substrates that exhibit high sensitivity.
引用
收藏
页码:296 / 299
页数:4
相关论文
共 23 条
[1]   Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes [J].
Ahn, Bok Y. ;
Duoss, Eric B. ;
Motala, Michael J. ;
Guo, Xiaoying ;
Park, Sang-Il ;
Xiong, Yujie ;
Yoon, Jongseung ;
Nuzzo, Ralph G. ;
Rogers, John A. ;
Lewis, Jennifer A. .
SCIENCE, 2009, 323 (5921) :1590-1593
[2]   Electrical sintering of nanoparticle structures [J].
Allen, Mark L. ;
Aronniemi, Mikko ;
Mattila, Tomi ;
Alastalo, Ari ;
Ojanpera, Kimmo ;
Suhonen, Mika ;
Seppa, Heikki .
NANOTECHNOLOGY, 2008, 19 (17)
[3]   Highly conducting patterned Pd nanowires by direct-write electron beam lithography [J].
Bhuvana, T. ;
Kulkarni, G. U. .
ACS NANO, 2008, 2 (03) :457-462
[4]   A SERS-activated nanocrystalline Pd substrate and its nanopatterning leading to biochip fabrication [J].
Bhuvana, Thiruvelu ;
Kulkarni, Giridhar U. .
SMALL, 2008, 4 (05) :670-676
[5]   Ink-jet fabrication of electronic components [J].
Bidoki, S. M. ;
Lewis, D. M. ;
Clark, M. ;
Vakorov, A. ;
Millner, P. A. ;
McGorman, D. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2007, 17 (05) :967-974
[6]   Microstructuring by printing and laser curing of nanoparticle solutions [J].
Bieri, NR ;
Chung, J ;
Haferl, SE ;
Poulikakos, D ;
Grigoropoulos, CP .
APPLIED PHYSICS LETTERS, 2003, 82 (20) :3529-3531
[7]   Inkjet printing of palladium catalyst patterns on polyimide film for electroless copper plating [J].
Busato, Stephan ;
Belloli, Alberto ;
Ermanni, Paolo .
SENSORS AND ACTUATORS B-CHEMICAL, 2007, 123 (02) :840-846
[8]   Inkjet printing for materials and devices [J].
Calvert, P .
CHEMISTRY OF MATERIALS, 2001, 13 (10) :3299-3305
[9]   Inkjet-printed gold nanoparticle chemiresistors: Influence of film morphology and ionic strength on the detection of organics dissolved in aqueous solution [J].
Chow, Edith ;
Herrmann, Jan ;
Barton, Christopher S. ;
Raguse, Burkhard ;
Wieczorek, Lech .
ANALYTICA CHIMICA ACTA, 2009, 632 (01) :135-142
[10]   Ink-jet printed nanoparticle microelectromechanical systems [J].
Fuller, SB ;
Wilhelm, EJ ;
Jacobson, JM .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2002, 11 (01) :54-60