Bases for AC0 and Other Complexity Classes

被引:1
作者
Mazzanti, Stefano [1 ]
机构
[1] Univ Iuav Venezia, Dipartimento Culture Progetto, I-30123 Venice, Italy
关键词
concatenation recursion on notation; substitution basis;
D O I
10.3233/FI-2015-1165
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Function complexity classes are defined as the substitution closure of finite function sets by improving a method of elimination of concatenation recursion from function algebras. Consequently, the set of AC(0) functions and other canonical complexity classes are defined as the substitution closure of a finite function set.
引用
收藏
页码:433 / 460
页数:28
相关论文
共 17 条
[1]  
Allender E., 2009, CHAPMAN HALL CRC APP, V1
[2]   ON UNIFORMITY WITHIN NC1 [J].
BARRINGTON, DAM ;
IMMERMAN, N ;
STRAUBING, H .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1990, 41 (03) :274-306
[3]  
Clote P, 1999, STUD LOGIC, V140, P589
[4]  
Clote P., 1995, FEASIBLE MATH
[5]  
CLOTE P, 1990, FEASIBLE MATH
[6]  
Cook S., 2010, LOGICAL FDN PROFF CO
[7]   Uniform constant-depth threshold circuits for division and iterated multiplication [J].
Hesse, W ;
Allender, E ;
Barrington, DAM .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2002, 65 (04) :695-716
[8]   Function algebraic characterizations of the polytime functions [J].
Ishihara, H .
COMPUTATIONAL COMPLEXITY, 1999, 8 (04) :346-356
[9]  
Jones J. P., 1988, P 1 C CAN NUMB THEOR, P255
[10]  
Marcenkov S. S., 1969, MATH NOTES, V5, P336