A rough set paradigm for unifying rough set theory and fuzzy set theory

被引:0
作者
Polkowski, L
机构
[1] Polish Japanese Inst Informat Technol, PL-02008 Warsaw, Poland
[2] Univ Warmia & Mazury, Dept Math & Comp Sci, PL-10561 Olsztyn, Poland
来源
ROUGH SETS, FUZZY SETS, DATA MINING, AND GRANULAR COMPUTING | 2003年 / 2639卷
关键词
rough set theory; fuzzy set theory; rough mereology; rough inclusion;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this plenary address, we would like to discuss rough inclusions defined in Rough Mereology, a joint idea with A. Skowron, as a basis for common models for rough as well as fuzzy set theories. We would like to justify the point of view that tolerance (or, similarity) is the leading motif common to both theories and in this area paths between the two lie.
引用
收藏
页码:70 / 77
页数:8
相关论文
共 13 条
[1]  
Borkowski L., 1970, Jan Lukasiewicz Selected Works
[2]   Rough set approach to knowledge-based decision support [J].
Pawlak, Z .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1997, 99 (01) :48-57
[3]  
Lesniewski S, 1982, TOPOI, V2, P7
[4]  
LUKASIEWICZ J, 1918, FAREWELL LECT, P84
[5]   FUZZY LOGIC .1. MANY-VALUED RULES OF INFERENCE [J].
PAVELKA, J .
ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1979, 25 (01) :45-52
[6]   FUZZY LOGIC .2. ENRICHED RESIDUATED LATTICES AND SEMANTICS OF PROPOSITIONAL CALCULI [J].
PAVELKA, J .
ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1979, 25 (02) :119-134
[7]   FUZZY LOGIC .3. SEMANTICAL COMPLETENESS OF SOME MANY-VALUED PROPOSITIONAL CALCULI [J].
PAVELKA, J .
ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1979, 25 (05) :447-464
[8]   ROUGH SETS [J].
PAWLAK, Z .
INTERNATIONAL JOURNAL OF COMPUTER & INFORMATION SCIENCES, 1982, 11 (05) :341-356
[9]  
Pawlak Z., 1992, THEATRICAL ASPECTS R
[10]   Rough mereology: A new paradigm for approximate reasoning [J].
Polkowski, L ;
Skowron, A .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 1996, 15 (04) :333-365