Silica-coated LaNiO3 nanoparticles for non-thermal plasma assisted dry reforming of methane: Experimental and kinetic studies

被引:58
作者
Zheng, Xiaogang [1 ,2 ]
Tan, Shiyu [1 ]
Dong, Lichun [1 ,2 ]
Li, Shaobo [1 ]
Chen, Hongmei [1 ,2 ]
机构
[1] Chongqing Univ, Coll Chem & Chem Engn, Chongqing 630044, Peoples R China
[2] Chongqing Univ, Minist Educ, Key Lab Low Grade Energy Utilizat Technol & Syst, Chongqing 630044, Peoples R China
基金
中国国家自然科学基金;
关键词
Dry reforming of CH4; Dielectric barrier discharge; Core shell structure; LaNiO3@SiO2; Kinetic analysis; DIELECTRIC-BARRIER DISCHARGE; HIGHER HYDROCARBONS; CARBON-DIOXIDE; CATALYTIC PERFORMANCE; SYNGAS PRODUCTION; SYNTHESIS GAS; CH4; CO2; REACTOR; CONVERSION;
D O I
10.1016/j.cej.2014.12.035
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Silica-coated LaNiO3 nanoparticles (LaNiO3@SiO2 NPs) were prepared by the modified Stober method for the conversion of methane with carbon dioxide into syngas in a dielectric barrier discharge reactor (DBD) under ambient conditions. The synergistic effect of LaNiO3@SiO2 NPs and DBD plasma toward the dry reforming of methane was investigated as a function of flow rate of feed gases, input power, and molar ratio of CH4/CO2. The results indicated that the Ni-La2O3@SiO2 produced from LaNiO3@SiO2 NPs showed high catalytic activity for the plasma-assisted dry reforming of methane due to the creation of a silica shell. The Koros-Nowak criterion test demonstrated that the catalytic activity of Ni-La2O3@SiO2 sample was independent of the transport phenomenon. A semi-empirical power-law rate equation was applied to investigate the kinetic behavior of Ni-La2O3@SiO2 catalyst for the plasma-assisted dry reforming of CH4 and evaluate its kinetic parameters, including activation energy, rate constant, and reaction orders. Compared to the activation energy estimated for CO2 consumption, lower value of CH4 conversion corresponded to its higher reaction rate. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:147 / 156
页数:10
相关论文
共 49 条
[1]   Transient isotopic studies and microkinetic modeling of methane reforming over nickel catalysts [J].
Aparicio, LM .
JOURNAL OF CATALYSIS, 1997, 165 (02) :262-274
[2]   Plasma assisted dry methane reforming using gliding arc gas discharge: Effect of feed gases proportion [J].
Bo, Zheng ;
Yan, Jianhua ;
Li, Xiaodong ;
Chi, Yong ;
Cen, Kefa .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (20) :5545-5553
[3]   CO2 reforming of toluene as model compound of biomass tar on Ni/Palygorskite [J].
Chen, Tianhu ;
Liu, Haibo ;
Shi, Peichao ;
Chen, Dong ;
Song, Lei ;
He, Hongping ;
Frost, Ray L. .
FUEL, 2013, 107 :699-705
[4]   The CO2 reforming of CH4 over Ni/La2O3/α-Al2O3 catalysts:: The effect of La2O3 contents on the kinetic performance [J].
Cui, Yuehua ;
Zhang, Huidong ;
Xu, Hengyong ;
Li, Wenzhao .
APPLIED CATALYSIS A-GENERAL, 2007, 331 :60-69
[5]   Kinetic study of the catalytic reforming of CH4 with CO2 to syngas over Ni/α-Al2O3 catalyst:: The effect of temperature on the reforming mechanism [J].
Cui, Yuehua ;
Zhang, Huidong ;
Xu, Hengyong ;
Li, Wenzhao .
APPLIED CATALYSIS A-GENERAL, 2007, 318 :79-88
[6]   Direct conversion of methane and carbon dioxide to higher hydrocarbons using catalytic dielectric-barrier discharges with zeolites [J].
Eliasson, B ;
Liu, CJ ;
Kogelschatz, U .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2000, 39 (05) :1221-1227
[7]   Effects of Reactor Packing Materials on H2 Production by CO2 Reforming of CH4 in a Dielectric Barrier Discharge [J].
Gallon, Helen J. ;
Tu, Xin ;
Whitehead, J. Christopher .
PLASMA PROCESSES AND POLYMERS, 2012, 9 (01) :90-97
[8]  
Goldwasser M.R., 2012, J MOL CATAL A-CHEM, V228, P325
[9]   Influence of the Plasma Power Supply Nature on the Plasma-Catalyst Synergism for the Carbon Dioxide Reforming of Methane [J].
Goujard, Valentin ;
Tatibouet, Jean-Michel ;
Batiot-Dupeyrat, Catherine .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2009, 37 (12) :2342-2346
[10]   Modeling and analysis of autothermal reforming of methane to hydrogen in a fixed bed reformer [J].
Halabi, M. H. ;
de Croon, M. H. J. M. ;
van der Schaaf, J. ;
Cobden, P. D. ;
Schouten, J. C. .
CHEMICAL ENGINEERING JOURNAL, 2008, 137 (03) :568-578