Crack-free in situ heat-treated high-alloy tool steel processed via laser powder bed fusion: microstructure and mechanical properties

被引:3
|
作者
Bergmueller, Simon [1 ]
Kaserer, Lukas [1 ]
Fuchs, Lorenz [1 ]
Braun, Jakob [1 ]
Weinberger, Nikolaus [2 ]
Letofsky-Papst, Ilse [3 ,4 ]
Leichtfried, Gerhard [1 ]
机构
[1] Univ Innsbruck, Fac Engn Sci, Dept Mechatron, Mat Sci, Technikerstr 13, A-6020 Innsbruck, Austria
[2] Univ Innsbruck, Fac Engn Sci, Dept Struct Engn & Mat Sci, Mat Technol, Technikerstr 13, A-6020 Innsbruck, Austria
[3] Graz Univ Technol, Inst Electron Microscopy & Nanoanal, Steyrergasse 17, A-8010 Graz, Austria
[4] Graz Univ Technol, Ctr Electron Microscopy, Steyrergasse 17, A-8010 Graz, Austria
关键词
LPBF; High carbon steel; High-speed steel; Additive manufacturing; Heat treatment; Microstructure; HIGH-SPEED STEELS; RESIDUAL-STRESS; BEHAVIOR; EVOLUTION; CARBIDE; S390;
D O I
10.1016/j.heliyon.2022.e10171
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study, high-alloy tool steel S390 was processed crack-free and dense for the first time using laser powder bed fusion (LPBF). The resulting mechanical properties and microstructure of the LPBF steel parts were investigated. High-alloy tool steels, such as high-performance high-speed Boehler S390 steel (containing 1.64 wt% C and W, Mo, V, Co, and Cr in the ratio 10:2:5:8:5 wt%), are prone to cracking when processed using LPBF because these steels have high carbon and carbide-forming alloying elements content. Cracks are induced by thermal stresses and solid-phase transformation, combined with weak grain boundaries caused by segregated primary carbides. Substrate plate heating reduces thermal stresses and enables in situ heat treatment, thus modulating solid-phase transformation and carbide precipitation and preventing cracking during cooling. The resulting microstructure, precipitations, and mechanical properties of the as-built LPBF specimens, which were in situ heat-treated at 800 degrees C, and the conventionally post-heat-treated specimens were assessed using optical microscopy, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, electron backscatter diffraction, X-ray diffraction, hardness testing, bending testing, and density measurement. In situ heat treatment impacts microstructure, precipitation behavior, and solid-phase transformation, causing a change in the microstructure of the material along the build direction due to different thermal histories. The as-built specimens exhibit a hardness gradient along the build direction of 500 HV1 to 800 HV1 in the top layer. The average bending strength is 2500 MPa, measured from the tensile stresses on the harder side and the compressive stresses on the softer side. Conventional post-heat treatment yields a mean hardness of 610 HV1 and a mean bending strength of 2800 MPa.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Microstructure and corrosion behavior of differently heat-treated Ti-6Al-4V alloy processed by laser powder bed fusion of hydride-dehydride powder
    Delpazir, Melody H.
    Asherloo, Mohammadreza
    Abad, Sajjad Nasiri Khalil
    Thompson, Alaina
    Guma, Victor
    Bagi, Sourabh D.
    Sreenivas, Keerthi Kumar
    Paliwal, Muktesh
    Terry, Jeff
    Rollett, Anthony D.
    Mostafaei, Amir
    CORROSION SCIENCE, 2023, 224
  • [42] Microstructure and Mechanical Properties of AlSi12CuNi Alloy Fabricated by Laser Powder Bed Fusion Process
    Hirayama, Akihiro
    Kimura, Masaaki
    Kusaka, Masahiro
    Kaizu, Koichi
    INTERNATIONAL JOURNAL OF AUTOMATION TECHNOLOGY, 2021, 15 (04) : 388 - 395
  • [43] Anisotropy of microstructure, mechanical properties and thermal expansion in Invar 36 alloy fabricated via laser powder bed fusion
    Huang, Guoliang
    He, Gongming
    Liu, Ying
    Huang, Ke
    ADDITIVE MANUFACTURING, 2024, 82
  • [44] Microstructure and mechanical properties of Ti-6.5Al-2Zr-Mo-V alloy processed by Laser Powder Bed Fusion and subsequent heat treatments
    Li, Shuhan
    Lan, Xinqiang
    Wang, Zemin
    Mei, Shuwen
    ADDITIVE MANUFACTURING, 2021, 48
  • [45] Microstructure and mechanical properties of in-situ oxide-dispersion-strengthened NiCrFeY alloy produced by laser powder bed fusion
    Xu, Ruifeng
    Geng, Zhaowen
    Wu, Yiyou
    Chen, Chao
    Ni, Mang
    Li, Dan
    Zhang, Taomei
    Huang, Hongtao
    Liu, Feng
    Li, Ruidi
    Zhou, Kechao
    ADVANCED POWDER MATERIALS, 2022, 1 (04):
  • [46] Facile and cost-effective approach to additively manufacture crack-free 7075 aluminum alloy by laser powder bed fusion
    Li, Gan
    Ruan, Gang
    Huang, Yuhe
    Xu, Zhen
    Li, Xinwei
    Guo, Chuan
    Zhao, Chunlu
    Cheng, Le
    Hu, Xiaogang
    Li, Xinggang
    Zhu, Qiang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 928
  • [47] High Temperature Mechanical Properties of AlMgScZr Alloy Produced by Laser Powder Bed Fusion
    Abrami, Maria Beatrice
    Tocci, Marialaura
    Gelfi, Marcello
    Pola, Annalisa
    23 EUROPEAN CONFERENCE ON FRACTURE, ECF23, 2022, 42 : 838 - 846
  • [48] Laser powder bed fusion in-situ alloying of W-Y alloy: Microstructure, mechanical properties and cracking suppression
    Chen, Yu
    Li, An
    Zhou, Lvjun
    Ye, Linfeng
    Tan, Yang
    Zhao, Tianyu
    Du, Juan
    Tang, Jun
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 916
  • [49] High-strength aluminum alloy processed by micro laser powder bed fusion (μ-LPBF): Coordination of laser formability, microstructure evolution, and mechanical properties
    Liu, He
    Gu, Dongdong
    Shi, Keyu
    Zhang, Han
    Zhang, Yijuan
    Li, Linxuan
    Li, Jingyang
    Qi, Junfeng
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2024, 332
  • [50] A high strength Al-Li alloy produced by laser powder bed fusion: Densification, microstructure, and mechanical properties
    Qi, Yang
    Zhang, Hu
    Nie, Xiaojia
    Hu, Zhiheng
    Zhu, Haihong
    Zeng, Xiaoyan
    ADDITIVE MANUFACTURING, 2020, 35 (35)