The Henon problem with large exponent in the disc

被引:13
作者
Amadori, Anna Lisa [1 ]
Gladiali, Francesca [2 ]
机构
[1] Univ Napoli Parthenope, Dipartimento Sci Applicate, Ctr Direz Napoli, Isola C4, I-80143 Naples, Italy
[2] Univ Sassari, Dipartimento Chim & Farm, Via Piandanna 4, I-07100 Sassari, Italy
关键词
Nodal solutions; Concentration phenomena; Morse index; Least energy radial and non-radial solutions; 2-DIMENSIONAL ELLIPTIC PROBLEM; LANE-EMDEN PROBLEMS; NODAL SOLUTIONS; RADIAL SOLUTIONS; SYMMETRY; UNIQUENESS; EQUATIONS;
D O I
10.1016/j.jde.2019.11.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the Henon problem in the unit disc with Dirichlet boundary conditions. We study the asymptotic profile of least energy and nodal least energy radial solutions and then deduce the exact computation of their Morse index for large values of the exponent p. As a consequence of this computation a multiplicity result for positive and nodal solutions is obtained. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:5892 / 5944
页数:53
相关论文
共 33 条
[1]   Qualitative properties of nodal solutions of semilinear elliptic equations in radially symmetric domains [J].
Aftalion, A ;
Pacella, F .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (05) :339-344
[2]  
Amadori A.L., 2018, ARXIV190600368
[3]  
Amadori A.L., 2019, ARXIV190901321
[4]   Asymptotic profile and Morse index of nodal radial solutions to the Henon problem [J].
Amadori, Anna Lisa ;
Gladiali, Francesca .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (05)
[5]  
Amadori AL, 2014, ADV DIFFERENTIAL EQU, V19, P755
[6]  
[Anonymous], ARXIV180504321
[7]  
[Anonymous], ARXIV170903315
[8]  
[Anonymous], ARXIV190600433
[9]   Partial symmetry of least energy nodal solutions to some variational problems [J].
Bartsch, T ;
Weth, T ;
Willew, M .
JOURNAL D ANALYSE MATHEMATIQUE, 2005, 96 (1) :1-18
[10]  
Bartsch T., 2003, TOPOL METHOD NONL AN, V22, P1