Conformation and dynamics of the kinase domain drive subcellular location and activation of LRRK2

被引:26
作者
Schmidt, Sven H. [1 ]
Weng, Jui-Hung [2 ]
Aoto, Phillip C. [2 ,3 ]
Boassa, Daniela [4 ,5 ]
Mathea, Sebastian [6 ]
Silletti, Steve [3 ]
Hu, Junru [4 ,5 ]
Wallbott, Maximilian [1 ]
Komives, Elizabeth A. [3 ]
Knapp, Stefan [6 ,7 ]
Herberg, Friedrich W. [1 ]
Taylor, Susan S. [2 ,3 ]
机构
[1] Univ Kassel, Dept Biochem, D-34132 Kassel, Germany
[2] Univ Calif San Diego, Dept Pharmacol, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Natl Ctr Microscopy & Imaging Res, La Jolla, CA 92093 USA
[5] Univ Calif San Diego, Dept Neurosci, La Jolla, CA 92093 USA
[6] Goethe Univ Frankfurt, Inst Pharmaceut Chem, D-60438 Frankfurt, Germany
[7] Goethe Univ Frankfurt, Buchmann Inst Mol Life Sci, Struct Genom Consortium, D-60438 Frankfurt, Germany
基金
加拿大创新基金会;
关键词
leucine-rich repeat kinase 2 (LRRK2); hydrogen-deuterium exchange mass spectrometry (HDX-MS); Gaussian accelerated molecular dynamics; kinase regulation; Parkinson's disease; 14-3-3; BINDING; RAF; MUTATIONS; PATHWAY; PHOSPHORYLATION; LOCALIZATION; INHIBITOR; MECHANISM; ENHANCE; LEADS;
D O I
10.1073/pnas.2100844118
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
To explore how pathogenic mutations of the multidomain leucinerich repeat kinase 2 (LRRK2) hijack its finely tuned activation process and drive Parkinson's disease (PD), we used a multitiered approach. Most mutations mimic Rab-mediated activation by "unleashing" kinase activity, and many, like the kinase inhibitor MLi-2, trap LRRK2 onto microtubules. Here we mimic activation by simply deleting the inhibitory N-terminal domains and then characterize conformational changes induced by MLi-2 and PD mutations. After confirming that LRRK2(RCKW) retains full kinase activity, we used hydrogen-deuterium exchange mass spectrometry to capture breathing dynamics in the presence and absence of MLi-2. Solvent-accessible regions throughout the entire protein are reduced by MLi-2 binding. With molecular dynamics simulations, we created a dynamic portrait of LRRK2(RCKW) and demonstrate the consequences of kinase domain mutations. Although all domains contribute to regulating kinase activity, the kinase domain, driven by the DYG(psi) motif, is the allosteric hub that drives LRRK2 regulation.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Mutant LRRK2 Toxicity in Neurons Depends on LRRK2 Levels and Synuclein But Not Kinase Activity or Inclusion Bodies
    Skibinski, Gaia
    Nakamura, Ken
    Cookson, Mark R.
    Finkbeiner, Steven
    JOURNAL OF NEUROSCIENCE, 2014, 34 (02) : 418 - 433
  • [22] LRRK2 localizes to endosomes and interacts with clathrin-light chains to limit Rac1 activation
    Schreij, Andrea M. A.
    Chaineau, Mathilde
    Ruan, Wenjing
    Lin, Susan
    Barker, Philip A.
    Fon, Edward A.
    McPherson, Peter S.
    EMBO REPORTS, 2015, 16 (01) : 79 - 86
  • [23] LRRK2 kinase activity regulates synaptic vesicle trafficking and neurotransmitter release through modulation of LRRK2 macro-molecular complex
    Cirnaru, Maria D.
    Marte, Antonella
    Belluzzi, Elisa
    Russo, Isabella
    Gabrielli, Martina
    Longo, Francesco
    Arcuri, Ludovico
    Murru, Luca
    Bubacco, Luigi
    Matteoli, Michela
    Fedele, Ernesto
    Sala, Carlo
    Passafaro, Maria
    Morari, Michele
    Greggio, Elisa
    Onofri, Franco
    Piccoli, Giovanni
    FRONTIERS IN MOLECULAR NEUROSCIENCE, 2014, 7
  • [24] Novel cinnoline-based inhibitors of LRRK2 kinase activity
    Garofalo, Albert W.
    Adler, Marc
    Aubele, Danielle L.
    Bowers, Simeon
    Franzini, Maurizio
    Goldbach, Erich
    Lorentzen, Colin
    Neitz, R. Jeffrey
    Probst, Gary D.
    Quinn, Kevin P.
    Santiago, Pam
    Sham, Hing L.
    Tam, Danny
    Truong, Anh P.
    Ye, Xiaocong M.
    Ren, Zhao
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2013, 23 (01) : 71 - 74
  • [25] Capturing the domain crosstalk in full length LRRK2 and LRRK2RCKW
    Stoermer, Eliza
    Weng, Jui-Hung
    Wu, Jian
    Bertinetti, Daniela
    Sharma, Pallavi Kaila
    Ma, Wen
    Herberg, Friedrich W.
    Taylor, Susan S.
    BIOCHEMICAL JOURNAL, 2023, 480 (11) : 815 - 833
  • [26] LRRK2: from kinase to GTPase to microtubules and back
    Blanca Ramirez, Marian
    Lara Ordonez, Antonio Jesus
    Fdez, Elena
    Hilfiker, Sabine
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2017, 45 : 141 - 146
  • [27] Rab GTPases as Physiological Substrates of LRRK2 Kinase
    Seol, Wongi
    Nam, Daleum
    Son, Ilhong
    EXPERIMENTAL NEUROBIOLOGY, 2019, 28 (02) : 134 - 145
  • [28] The Parkinson's disease kinase LRRK2 autophosphorylates its GTPase domain at multiple sites
    Greggio, Elisa
    Taymans, Jean-Marc
    Zhen, Eugene Yuejun
    Ryder, John
    Vancraenenbroeck, Renee
    Beilina, Alexandra
    Sun, Peng
    Deng, Junpeng
    Jaffe, Howard
    Baekelandt, Veerle
    Merchant, Kalpana
    Cookson, Mark R.
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2009, 389 (03) : 449 - 454
  • [29] Rab29 activation of the Parkinson's disease-associated LRRK2 kinase
    Purlyte, Elena
    Dhekne, Herschel S.
    Sarhan, Adil R.
    Gomez, Rachel
    Lis, Pawel
    Wightman, Melanie
    Martinez, Terina N.
    Tonelli, Francesca
    Pfeffer, Suzanne R.
    Alessi, Dario R.
    EMBO JOURNAL, 2018, 37 (01) : 1 - 18
  • [30] A QUICK Screen for Lrrk2 Interaction Partners - Leucine-rich Repeat Kinase 2 is Involved in Actin Cytoskeleton Dynamics
    Meixner, Andrea
    Boldt, Karsten
    Van Troys, Marleen
    Askenazi, Manor
    Gloeckner, Christian J.
    Bauer, Matthias
    Marto, Jarrod A.
    Ampe, Christophe
    Kinkl, Norbert
    Ueffing, Marius
    MOLECULAR & CELLULAR PROTEOMICS, 2011, 10 (01)