Perturbation-based moveout approximations in anisotropic media

被引:26
|
作者
Xu, Shibo [1 ]
Stovas, Alexey [1 ]
Hao, Qi [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Petr Engn & Appl Geophys, SP Andersens Veg 15a, NO-7491 Trondheim, Norway
关键词
Moveout approximation; Anisotropy; Seismic modelling; ACOUSTIC-WAVE EQUATION; ANELLIPTIC APPROXIMATIONS; PARAMETER-ESTIMATION; QP VELOCITIES; INVERSION;
D O I
10.1111/1365-2478.12480
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The moveout approximations play an important role in seismic data processing. The standard hyperbolic moveout approximation is based on an elliptical background model with two velocities: vertical and normal moveout. We propose a new set of moveout approximations based on a perturbation series in terms of anellipticity parameters using the alternative elliptical background model defined by vertical and horizontal velocities. We start with a transversely isotropic medium with a vertical symmetry axis. Then, we extend this approach to a homogeneous orthorhombic medium. To define the perturbation coefficients for a new background, we solve the eikonal equation with horizontal velocities in transversely isotropic medium with a vertical symmetry axis and orthorhombic media. To stabilise the perturbation series and improve the accuracy, the Shanks transform is applied for all the cases. We select different parameterisations for both velocities and anellipticity parameters for an orthorhombic model. From the comparison in traveltime error, the new moveout approximations result in better accuracy comparing with the standard perturbation-based methods and other approximations.
引用
收藏
页码:1218 / 1230
页数:13
相关论文
共 50 条
  • [21] Reflection moveout inversion in azimuthally anisotropic media: accuracy, limitations and acquisition
    Al-Dajani, A
    Alkhalifah, T
    Morgan, FD
    GEOPHYSICAL PROSPECTING, 1999, 47 (05) : 735 - 756
  • [22] 3-D description of normal moveout in anisotropic inhomogeneous media
    Grechka, V
    Tsvankin, I
    GEOPHYSICS, 1998, 63 (03) : 1079 - 1092
  • [23] Unfooling Perturbation-Based Post Hoc Explainers
    Carmichael, Zachariah
    Scheirer, Walter J.
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 6, 2023, : 6925 - 6934
  • [24] Perturbation-Based Stochastic Modeling of Nonlinear Circuits
    Rathee, Akash
    Parthasarathy, Harish
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2013, 32 (01) : 123 - 141
  • [25] Improved Perturbation-based Fiber Nonlinearity Compensation
    Frey, Felix
    Emmerich, Robert
    Schubert, Colja
    Fischer, Johannes K.
    Fischer, Robert F. H.
    2018 EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC), 2018,
  • [26] Ensembling perturbation-based oversamplers for imbalanced datasets
    Zhang, Jianjun
    Wang, Ting
    Ng, Wing W. Y.
    Pedrycz, Witold
    NEUROCOMPUTING, 2022, 479 : 1 - 11
  • [27] Accuracy comparison of nonhyperbolic moveout approximations for qP-waves in VTI media
    Golikov, Pavel
    Stovas, Alexey
    JOURNAL OF GEOPHYSICS AND ENGINEERING, 2012, 9 (04) : 428 - 432
  • [28] PertCF: A Perturbation-Based Counterfactual Generation Approach
    Bayrak, Betul
    Bach, Kerstin
    ARTIFICIAL INTELLIGENCE XL, AI 2023, 2023, 14381 : 174 - 187
  • [29] Learning for Perturbation-Based Fiber Nonlinearity Compensation
    Luo, Shenghang
    Soman, Sunish Kumar Orappanpara
    Lampe, Lutz
    Mitra, Jeebak
    Li, Chuandong
    2022 EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC), 2022,
  • [30] Perturbation-Based Stochastic Modeling of Nonlinear Circuits
    Akash Rathee
    Harish Parthasarathy
    Circuits, Systems, and Signal Processing, 2013, 32 : 123 - 141