Perturbation-based moveout approximations in anisotropic media

被引:26
|
作者
Xu, Shibo [1 ]
Stovas, Alexey [1 ]
Hao, Qi [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Petr Engn & Appl Geophys, SP Andersens Veg 15a, NO-7491 Trondheim, Norway
关键词
Moveout approximation; Anisotropy; Seismic modelling; ACOUSTIC-WAVE EQUATION; ANELLIPTIC APPROXIMATIONS; PARAMETER-ESTIMATION; QP VELOCITIES; INVERSION;
D O I
10.1111/1365-2478.12480
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The moveout approximations play an important role in seismic data processing. The standard hyperbolic moveout approximation is based on an elliptical background model with two velocities: vertical and normal moveout. We propose a new set of moveout approximations based on a perturbation series in terms of anellipticity parameters using the alternative elliptical background model defined by vertical and horizontal velocities. We start with a transversely isotropic medium with a vertical symmetry axis. Then, we extend this approach to a homogeneous orthorhombic medium. To define the perturbation coefficients for a new background, we solve the eikonal equation with horizontal velocities in transversely isotropic medium with a vertical symmetry axis and orthorhombic media. To stabilise the perturbation series and improve the accuracy, the Shanks transform is applied for all the cases. We select different parameterisations for both velocities and anellipticity parameters for an orthorhombic model. From the comparison in traveltime error, the new moveout approximations result in better accuracy comparing with the standard perturbation-based methods and other approximations.
引用
收藏
页码:1218 / 1230
页数:13
相关论文
共 50 条
  • [1] Perturbation-based moveout approximation in the elastic transversely isotropic media with a vertical symmetry axis
    Xu, Shibo
    Stovas, Alexey
    GEOPHYSICS, 2022, 87 (06) : C191 - C200
  • [2] Nonlinear and stable perturbation-based approximations
    Den Haan, Wouter J.
    De Wind, Joris
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2012, 36 (10): : 1477 - 1497
  • [3] APPROXIMATIONS TO SHEAR-WAVE VELOCITY AND MOVEOUT EQUATIONS IN ANISOTROPIC MEDIA
    LI, XY
    CRAMPIN, S
    GEOPHYSICAL PROSPECTING, 1993, 41 (07) : 833 - 857
  • [4] NORMAL MOVEOUT IN ANISOTROPIC MEDIA
    UREN, NF
    GARDNER, GHF
    MCDONALD, JA
    GEOPHYSICS, 1990, 55 (12) : 1634 - 1636
  • [5] DIP MOVEOUT IN ANISOTROPIC MEDIA
    UREN, NF
    GARDNER, GHF
    MCDONALD, JA
    GEOPHYSICS, 1990, 55 (07) : 863 - 867
  • [6] Mapping moveout approximations in TI media
    Stovas, Alexey
    Alkhalifah, Tariq
    GEOPHYSICS, 2014, 79 (01) : C19 - C26
  • [7] NONHYPERBOLIC REFLECTION MOVEOUT IN ANISOTROPIC MEDIA
    TSVANKIN, I
    THOMSEN, L
    GEOPHYSICS, 1994, 59 (08) : 1290 - 1304
  • [8] Perturbation-based classifier
    Edson L. Araújo
    George D. C. Cavalcanti
    Tsang Ing Ren
    Soft Computing, 2020, 24 : 16565 - 16576
  • [9] Perturbation-based classifier
    Araujo, Edson L.
    Cavalcanti, George D. C.
    Ren, Tsang Ing
    SOFT COMPUTING, 2020, 24 (21) : 16565 - 16576
  • [10] A perturbation-based testing strategy
    Murrill, B
    Morell, L
    Olimpiew, E
    EIGHTH IEEE INTERNATIONAL CONFERENCE ON ENGINEERING OF COMPLEX COMPUTER SYSTEMS, PROCEEDINGS, 2002, : 145 - 152