Hall magnetohydrodynamic turbulence with a magnetic Prandtl number larger than unity

被引:5
作者
Miura, Hideaki [1 ]
Yang, Jiguan [2 ]
Gotoh, Toshiyuki [2 ]
机构
[1] Natl Inst Fus Sci, Toki, Gifu 5095292, Japan
[2] Nagoya Inst Technol, Dept Phys Sci & Engn, Nagoya, Aichi 4668555, Japan
来源
PHYSICAL REVIEW E | 2019年 / 100卷 / 06期
关键词
SIMULATIONS;
D O I
10.1103/PhysRevE.100.063207
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Turbulence structures with the magnetic Prandtl number larger than unity are studied by means of direct numerical simulations of homogeneous, isotropic, and incompressible Hall magnetohydrodynamic (MHD) turbulence driven by a random force. Spectral and spatial structures on the scales smaller than the ion skin depth are focused upon in this numerical paper. The numerical simulations reveal the emergence of a new power law in the velocity field whereas it is not observed in MHD turbulence simulation without the Hall term. An order estimate of the energy budget in the spectral space shows that this new power law appears in association with the Hall effect and that a balance between the Lorentz force and the viscous dissipation is crucial for formation of the power law. A resemblance to an elastic turbulence is found in the power-law-formation mechanism. Frequent eruptions of strong current ribbons accompanying strong palinstrophy density are observed, showing generation of the palinstrophy density by the Lorentz force at the scales below the ion skin depth. These properties in spectral and spatial structures characterize a high magnetic Prandtl number Hall MHD turbulence at the scales smaller than the ion skin depth.
引用
收藏
页数:6
相关论文
共 22 条
  • [1] Biskamp D., 2003, Magnetohydrodynamic Turbulence
  • [2] MAGNETIC PRANDTL NUMBER DEPENDENCE OF THE KINETIC- TO- MAGNETIC DISSIPATION RATIO
    Brandenburg, Axel
    [J]. ASTROPHYSICAL JOURNAL, 2014, 791 (01)
  • [3] Davidson PA, 2013, TURBULENCE IN ROTATING, STRATIFIED AND ELECTRICALLY CONDUCTING FLUIDS, P1, DOI 10.1017/CBO9781139208673
  • [4] How to identify reconnecting current sheets in incompressible Hall MHD turbulence
    Donato, S.
    Greco, A.
    Matthaeus, W. H.
    Servidio, S.
    Dmitruk, P.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2013, 118 (07) : 4033 - 4038
  • [5] Frisch U., 1995, Turbulence: The Legacy of A. N. Kolmogorov
  • [6] Multiscale Hall-magnetohydrodynamic turbulence in the solar wind
    Galtier, Sebastien
    Buchlin, Eric
    [J]. ASTROPHYSICAL JOURNAL, 2007, 656 (01) : 560 - 566
  • [7] von Karman-Howarth equations for Hall magnetohydrodynamic flows
    Galtier, Sebastien
    [J]. PHYSICAL REVIEW E, 2008, 77 (01):
  • [8] Turbulent electromagnetic fields at sub-proton scales: Two-fluid and full-kinetic plasma simulations
    Gonzalez, C. A.
    Parashar, T. N.
    Gomez, D.
    Matthaeus, W. H.
    Dmitruk, P.
    [J]. PHYSICS OF PLASMAS, 2019, 26 (01)
  • [9] Hori D., 2008, Plasma Fusion Res, V3, pS1053, DOI [DOI 10.1585/PFR.3.S1053, 10.1585/pfr.3.S1053.]
  • [10] Energy spectrum in high-resolution direct numerical simulations of turbulence
    Ishihara, Takashi
    Morishita, Koji
    Yokokawa, Mitsuo
    Uno, Atsuya
    Kaneda, Yukio
    [J]. PHYSICAL REVIEW FLUIDS, 2016, 1 (08):