Optimistic weighted Shapley rules in minimum cost spanning tree problems

被引:21
作者
Bergantinos, Gustavo [1 ]
Lorenzo-Freire, Silvia
机构
[1] Univ Vigo, Fac Econ, Res Grp Econ Anal, Vigo 36310, Pontevedra, Spain
[2] Univ Vigo, Dept Stat & Operat Res, Vigo, Spain
关键词
minimum cost spanning tree problems; weighted Shapley values;
D O I
10.1016/j.ejor.2006.12.035
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We introduce optimistic weighted Shapley rules in minimum cost spanning tree problems. We define them as the weighted Shapley values of the optimistic game nu(+) introduced in Bergantinos and Vidal-Puga [Bergantinos, G., Vidal-Puga, J.J., forthcoming. The optimistic TU game in minimum cost spanning tree problems. International Journal of Game Theory. Available from: < http://webs.uvigo.es/gbergant/papers/cstShapley.pdt >]. We prove that they are obligation rules [Tijs, S., Branzei, R., Moretti, S., Norde, H., 2006. Obligation rules for minimum cost spanning tree situations and their monotonicity properties. European Journal of Operational Research 175, 121-134]. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:289 / 298
页数:10
相关论文
共 20 条
[1]  
Aarts H., 1993, MATH METHOD OPER RES, V38, P163
[2]   A non-cooperative approach to the cost spanning tree problem [J].
Bergantiños, G ;
Lorenzo, L .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2004, 59 (03) :393-403
[3]  
BERGANTINOS G, 2005, UNPUB FAIR FULES COS
[4]  
BERGANTINOS G, 2005, UNPUB SEVERAL APPROA
[5]  
BERGANTINOS G, IN PRESS INT J GAME
[6]  
BIRD CG, 1976, NETWORKS, V6, P334
[7]  
Branzei R, 2004, THEOR DECIS, V56, P47
[8]   Cost monotonicity, consistency and minimum cost spanning tree games [J].
Dutta, B ;
Kar, A .
GAMES AND ECONOMIC BEHAVIOR, 2004, 48 (02) :223-248
[9]  
FELTKAMP V, 1995, UNPUB IRREDUCIBLE CO
[10]   MINIMUM COST SPANNING TREE GAMES [J].
GRANOT, D ;
HUBERMAN, G .
MATHEMATICAL PROGRAMMING, 1981, 21 (01) :1-18