Realizing discontinuous wave functions with renormalized short-range potentials

被引:144
作者
Cheon, T [1 ]
Shigehara, T
机构
[1] Kochi Univ Technol, Phys Lab, Kochi 7828502, Japan
[2] Saitama Univ, Dept Informat & Comp Sci, Urawa, Saitama 3388570, Japan
关键词
point interaction; self-adjoint extension; delta ' potential; wave function discontinuity; Neumann boundary;
D O I
10.1016/S0375-9601(98)00188-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the most general three-parameter family of point interactions on the line can be expressed as the self-adjoint local operators in terms of three Dirac's delta functions with the renormalized strengths in the disappearing distances. Experimental realization of the Neumann boundary is discussed. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:111 / 116
页数:6
相关论文
共 16 条
  • [1] Albeverio S., 1988, Solvable Models in Quantum Mechanics
  • [2] PERIODIC SCHRODINGER-OPERATORS WITH LARGE GAPS AND WANNIER-STARK LADDERS
    AVRON, JE
    EXNER, P
    LAST, Y
    [J]. PHYSICAL REVIEW LETTERS, 1994, 72 (06) : 896 - 899
  • [3] 4-PARAMETER POINT-INTERACTION IN 1D QUANTUM-SYSTEMS
    CARREAU, M
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (02): : 427 - 432
  • [4] A NEW CLASS OF POINT INTERACTIONS IN ONE DIMENSION
    CHERNOFF, PR
    HUGHES, RJ
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 111 (01) : 97 - 117
  • [5] Generalized point interactions in one-dimensional quantum mechanics
    Coutinho, FAB
    Nogami, Y
    Perez, JF
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (11): : 3937 - 3945
  • [6] Contact interactions on graph superlattices
    Exner, P
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (01): : 87 - 102
  • [7] GESZTESY F, 1985, J REINE ANGEW MATH, V362, P28
  • [8] A NEW CLASS OF SOLVABLE MODELS IN QUANTUM-MECHANICS DESCRIBING POINT INTERACTIONS ON THE LINE
    GESZTESY, F
    HOLDEN, H
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (15): : 5157 - 5177
  • [9] GROSCHE C, 1995, J MATH PHYS, V28, P99
  • [10] A CLASS OF EXPLICITLY SOLUBLE, LOCAL, MANY-CENTER HAMILTONIANS FOR ONE-PARTICLE QUANTUM-MECHANICS IN 2 AND 3 DIMENSIONS .1.
    GROSSMANN, A
    HOEGHKROHN, R
    MEBKHOUT, M
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (09) : 2376 - 2385