An exponential time differencing method of lines for the Burgers and the modified Burgers equations

被引:7
作者
Bratsos, Athanassios G. [1 ]
Khaliq, Abdul Q. M. [2 ,3 ]
机构
[1] Technol Educ Inst TEI Athens, Dept Naval Architecture Engn, Athens 12210, Greece
[2] Middle Tennessee State Univ, Dept Math Sci, Murfreesboro, TN 37132 USA
[3] Middle Tennessee State Univ, Ctr Computat Sci, Murfreesboro, TN 37132 USA
关键词
Burgers equation; exponential time differencing scheme; finite-difference method; method of lines; modified Burgers equation; modified predictor-corrector method; reaction-diffusion equation; NUMERICAL-SOLUTION; COLLOCATION METHOD; B-SPLINES; SCHEMES; PDES;
D O I
10.1002/num.22273
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A second-order exponential time differencing scheme using the method of lines is developed in this article for the numerical solution of the Burgers and the modified Burgers equations. For each case, the resulting nonlinear system is solved explicitly using a modified predictor-corrector method. The efficiency of the method introduced is tested by comparing experimental results with others selected from the available literature.
引用
收藏
页码:2024 / 2039
页数:16
相关论文
共 45 条
[1]  
Apostol TomM., 1967, One-variable calculus, with an introduction to linear algebra, VI, pxx+666
[2]  
Bateman H., 1915, Mon. Weather Rev., V43, P163, DOI [10.1175/1520-0493(1915)432.0.CO
[3]  
2, 10.1175/1520-0493(1915)43<163:SRROTM>2.0.CO
[4]  
2, DOI 10.1175/1520-0493(1915)43ANDLT
[5]  
163:SRROTMANDGT
[6]  
2.0.CO
[7]  
2]
[8]   A new class of time discretization schemes for the solution of nonlinear PDEs [J].
Beylkin, G ;
Keiser, JM ;
Vozovoi, L .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 147 (02) :362-387
[9]   Fourth-order compact schemes for the numerical simulation of coupled Burgers' equation [J].
Bhatt, H. P. ;
Khaliq, A. Q. M. .
COMPUTER PHYSICS COMMUNICATIONS, 2016, 200 :117-138
[10]   A conservative exponential time differencing method for the nonlinear cubic Schrodinger equation [J].
Bratsos, A. G. ;
Khaliq, A. Q. M. .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (02) :230-251