Sc, Ge co-doping NASICON boosts solid-state sodium ion batteries' performance

被引:74
|
作者
Ran, Lingbing [1 ]
Baktash, Ardeshir [2 ]
Li, Ming [1 ]
Yin, Yu [1 ]
Demir, Baris [2 ]
Lin, Tongen [2 ]
Li, Meng [1 ]
Rana, Masud [1 ]
Gentle, Ian [3 ]
Wang, Lianzhou [2 ]
Searles, Debra J. [2 ,3 ]
Knibbe, Ruth [1 ]
机构
[1] Univ Queensland, Sch Mech & Min Engn, Brisbane, Qld 4072, Australia
[2] Univ Queensland, Australian Inst Bioengn & Nanotechnol AIBN, Brisbane, Qld 4072, Australia
[3] Univ Queensland, Sch Chem & Mol Biosci, Brisbane, Qld 4072, Australia
关键词
NASICON; Solid-state electrolyte; Co-doping; DFT calculation; Sodium ion battery; CYCLE-STABLE ANODE; ELECTRICAL-PROPERTIES; SUPERIONIC CONDUCTOR; SN4P3; MICROSPHERES; STORAGE; CHEMISTRY; ELECTROLYTE; MICROSTRUCTURE; NA3ZR2SI2PO12; EXCESS;
D O I
10.1016/j.ensm.2021.05.017
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid-state sodium ion batteries (SSSIBs) have been proposed to resolve the safety hazards of traditional liquid batteries. The sodium superionic conductor (NASICON), one of the most promising solid electrolyte candidates, has received much attention. However, the practical use of NASICON has been impeded by low ion mobility at room temperature (RT) and poor interfacial connectivity. Here, the improvement of both bulk and grain boundary conductivity has been achieved simultaneously via Sc and Ge co-doping. Bulk conductivity is increased by the Sc-doping, which increases the stability of the rhombohedral phase at RT, and the Ge-doping, which reduces the monoclinic to rhombohedral phase transformation temperature. The highest total conductivity of 4.64 x 10(-3) S cm(-1) was obtained for the Na3.125Zr1.75Sc0.125Ge0.125Si2PO12 structure. The improvement in conductivity due to the stabilisation of the rhombohedral phase was verified by DFT calculations. Finally, two different solid-state batteries using Na3V2 (PO4)(3) and Sn4P3@CNT as electrodes display impressive cycling capacities of 98 and 629 mAh g(-1) after 250 cycles, respectively. This co-doping principle also provides a framework to explore multiple-doping for other materials with similar structures.
引用
收藏
页码:282 / 291
页数:10
相关论文
共 50 条
  • [41] Ceramicized NASICON-based solid-state electrolytes for lithium metal batteries
    Tsai, Yung-Chun
    Ku, Meng-Chiao
    Hsieh, Chien-Te
    Sung, Po-Yu
    Chen, Pin-Shuan
    Mohanty, Debabrata
    Gandomi, Yasser Ashraf
    Hung, I-Ming
    Patra, Jagabandhu
    Chang, Jeng-Kuei
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2024, 28 (07) : 2047 - 2057
  • [42] Electromechanical Failure of NASICON-Type Solid-State Electrolyte-Based All-Solid-State Li-Ion Batteries
    He, Linchun
    Oh, Jin An Sam
    Watarai, Kenta
    Morita, Masato
    Zhao, Yue
    Sun, Qiaomei
    Sakamoto, Tetsuo
    Lu, Li
    Adams, Stefan
    CHEMISTRY OF MATERIALS, 2021, 33 (17) : 6841 - 6852
  • [43] A hybrid solid electrolyte for flexible solid-state sodium batteries
    Kim, Jae-Kwang
    Lim, Young Jun
    Kim, Hyojin
    Cho, Gyu-Bong
    Kim, Youngsik
    ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (12) : 3589 - 3596
  • [44] Effects of Nd and Al co-doping on the microstructure and lithium-ion transport in Li7La3Zr2O12 solid-state batteries
    Golmohammad, Mohammad
    Sazvar, Amirreza
    Shahraki, Mohammad Maleki
    Salimi, Mohsen
    SOLID STATE IONICS, 2024, 412
  • [45] Additive boosts performance of all-solid-state batteries
    Sealy, Cordelia
    MATERIALS TODAY, 2023, 66 : 2 - 2
  • [46] Electrochemical performance of LiMnPO4 by Fe and Zn co-doping for lithium-ion batteries
    Yi, Huihua
    Hu, Chenglin
    He, Xiangming
    Xu, Hongyun
    IONICS, 2015, 21 (03) : 667 - 671
  • [47] Electrochemical performance of LiMnPO4 by Fe and Zn co-doping for lithium-ion batteries
    Huihua Yi
    Chenglin Hu
    Xiangming He
    Hongyun Xu
    Ionics, 2015, 21 : 667 - 671
  • [48] Insight into the Microstructure and Ionic Conductivity of Cold Sintered NASICON Solid Electrolyte for Solid-State Batteries
    Liu, Yulong
    Liu, Jingru
    Sun, Qian
    Wang, Dawei
    Adair, Keegan R.
    Liang, Jianneng
    Zhang, Cheng
    Zhang, Li
    Lu, Shigang
    Huang, Huan
    Song, Xiping
    Sun, Xueliang
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (31) : 27890 - 27896
  • [49] Sc-substituted Nasicon solid electrolyte for an all-solid-state NaxCoO2/ Nasicon/Na sodium model battery with stable electrochemical performance
    Kehne, P.
    Guhl, C.
    Ma, Q.
    Tietz, F.
    Alff, L.
    Hausbrand, R.
    Komissinskiy, P.
    JOURNAL OF POWER SOURCES, 2019, 409 : 86 - 93
  • [50] The Layered Oxides in Lithium and Sodium-Ion Batteries: A Solid-State Chemistry Approach
    Delmas, Claude
    Carlier, Dany
    Guignard, Marie
    ADVANCED ENERGY MATERIALS, 2021, 11 (02)