TAKING A CLOSER LOOK AT SYNTHESIS: FINE-GRAINED ATTRIBUTE ANALYSIS FOR PERSON RE-IDENTIFICATION

被引:12
作者
Xiang, Suncheng [1 ]
Fu, Yuzhuo [1 ]
You, Guanjie [2 ]
Liu, Ting [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai, Peoples R China
[2] Natl Univ Def Technol, Coll Intelligence Sci & Technol, Changsha, Peoples R China
来源
2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021) | 2021年
基金
中国国家自然科学基金;
关键词
re-identification; synthetic dataset; fine-grained; attribute analysis;
D O I
10.1109/ICASSP39728.2021.9413757
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Person re-identification (re-ID) plays an important role in applications such as public security and video surveillance. Recently, learning from synthetic data, which benefits from the popularity of synthetic data engine, has achieved remarkable performance. However, in pursuit of high accuracy, researchers in the academic always focus on training with large-scale datasets at a high cost of time and label expenses, while neglect to explore the potential of performing efficient training from millions of synthetic data. To facilitate development in this field, we reviewed the previously developed synthetic dataset GPR and built an improved one (GPR+) with larger number of identities and distinguished attributes. Based on it, we quantitatively analyze the influence of dataset attribute on re-ID system. To our best knowledge, we are among the first attempts to explicitly dissect person re-ID from the aspect of attribute on synthetic dataset. This research helps us have a deeper understanding of the fundamental problems in person re-ID, which also provides useful insights for dataset building and future practical usage.
引用
收藏
页码:3765 / 3769
页数:5
相关论文
共 26 条
  • [1] Domain Adaptation Through Synthesis for Unsupervised Person Re-identification
    Bak, Slawomir
    Carr, Peter
    Lalonde, Jean-Francois
    [J]. COMPUTER VISION - ECCV 2018, PT XIII, 2018, 11217 : 193 - 209
  • [2] Looking beyond appearances: Synthetic training data for deep CNNs in re identification
    Barbosa, Igor Barros
    Cristani, Marco
    Caputo, Barbara
    Rognhaugen, Aleksander
    Theoharis, Theoharis
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2018, 167 : 50 - 62
  • [3] XGBoost: A Scalable Tree Boosting System
    Chen, Tianqi
    Guestrin, Carlos
    [J]. KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 785 - 794
  • [4] Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
  • [5] Controlling Perceptual Factors in Neural Style Transfer
    Gatys, Leon A.
    Ecker, Alexander S.
    Bethge, Matthias
    Hertzmann, Aaron
    Shechtman, Eli
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 3730 - 3738
  • [6] Image Style Transfer Using Convolutional Neural Networks
    Gatys, Leon A.
    Ecker, Alexander S.
    Bethge, Matthias
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 2414 - 2423
  • [7] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778
  • [8] Hermans A., 2017, ARXIV
  • [9] Densely Connected Convolutional Networks
    Huang, Gao
    Liu, Zhuang
    van der Maaten, Laurens
    Weinberger, Kilian Q.
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 2261 - 2269
  • [10] DeepReID: Deep Filter Pairing Neural Network for Person Re-Identification
    Li, Wei
    Zhao, Rui
    Xiao, Tong
    Wang, Xiaogang
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 152 - 159