Co,N-codoped graphene as efficient electrocatalyst for hydrogen evolution reaction: Insight into the active centre

被引:62
作者
Wang, Shumin [1 ]
Zhang, Lei [2 ]
Qin, Yong [1 ]
Ding, Dong [2 ]
Bu, Yunfei [1 ]
Chu, Fuqiang [1 ]
Kong, Yong [1 ]
Liu, Meilin [2 ]
机构
[1] Changzhou Univ, Jiangsu Key Lab Adv Catalyt Mat & Technol, Sch Petrochem Engn, Changzhou 213164, Peoples R China
[2] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Co; N-codoped graphene; 3D graphene; Hydrogen evolution reaction; Active centre; Electrocatalyst; OXYGEN-REDUCTION REACTION; HIGH-PERFORMANCE; CATALYTIC-ACTIVITY; NICKEL PHOSPHIDE; H-2; PRODUCTION; CARBON; CO; NITROGEN; NANOSHEETS; HYBRID;
D O I
10.1016/j.jpowsour.2017.07.107
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Co and N co-doped carbon (CNC) material is one of the most promising precious-metal-free catalyst for hydrogen evolution reaction (HER), however, widespread application of CNC will require continuous innovation and optimization of fabrication to maximize electrocatalytic performance, which is always a challenge. Herein, two types of three-dimensional (3D) graphene materials synthesized by one-step of simultaneous doping (Co,N/3DG-1) and two-step of sequential doping (Co,N/3DG-2) respectively, are evaluated and correlated their electrocatalytic activity for HER with experimental parameters. The results indicate that Co,N/3DG-2 exhibits significantly better electrocatalytic activity than Co,N/3DG-1. The structure analysis reveals that Co,N/3DG-2 has more moderate Co-N coordinated number than Co,N/3DG-1. Density functional theory calculations unravels that the equilibrium C and N around Co atom is more favorable to the adsorption and desorption of hydrogen. The results shed new light on the rational design of dual hetero-atom co-doped carbon materials, which may be applicable to other energy conversion and storage systems. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:260 / 268
页数:9
相关论文
共 49 条
[1]   Co@Co3O4 Encapsulated in Carbon Nanotube-Grafted Nitrogen-Doped Carbon Polyhedra as an Advanced Bifunctional Oxygen Electrode [J].
Aijaz, Arshad ;
Masa, Justus ;
Roesler, Christoph ;
Xia, Wei ;
Weide, Philipp ;
Botz, Alexander J. R. ;
Fischer, Roland A. ;
Schuhmann, Wolfgang ;
Muhler, Martin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (12) :4087-4091
[2]  
Andreiadis ES, 2013, NAT CHEM, V5, P48, DOI [10.1038/NCHEM.1481, 10.1038/nchem.1481]
[3]   A class of non-precious metal composite catalysts for fuel cells [J].
Bashyam, Rajesh ;
Zelenay, Piotr .
NATURE, 2006, 443 (7107) :63-66
[4]   Mixed Close-Packed Cobalt Molybdenum Nitrides as Non-noble Metal Electrocatalysts for the Hydrogen Evolution Reaction [J].
Cao, Bingfei ;
Veith, Gabriel M. ;
Neuefeind, Joerg C. ;
Adzic, Radoslav R. ;
Khalifah, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (51) :19186-19192
[5]   Preparation of Novel 3D Graphene Networks for Supercapacitor Applications [J].
Cao, Xiehong ;
Shi, Yumeng ;
Shi, Wenhui ;
Lu, Gang ;
Huang, Xiao ;
Yan, Qingyu ;
Zhang, Qichun ;
Zhang, Hua .
SMALL, 2011, 7 (22) :3163-3168
[6]   Hollowed-out octahedral Co/N-codoped carbon as a highly efficient non-precious metal catalyst for oxygen reduction reaction [J].
Chao, Shujun ;
Bai, Zhengyu ;
Cui, Qian ;
Yan, Huiying ;
Wang, Kui ;
Yang, Lin .
CARBON, 2015, 82 :77-86
[7]   Aminothiazole-derived N,S,Fe-doped graphene nanosheets as high performance electrocatalysts for oxygen reduction [J].
Chen, Chi ;
Yang, Xiao-Dong ;
Zhou, Zhi-You ;
Lai, Yu-Jiao ;
Rauf, Muhammad ;
Wang, Ying ;
Pan, Jing ;
Zhuang, Lin ;
Wang, Qiang ;
Wang, Yu-Cheng ;
Tian, Na ;
Zhang, Xin-Sheng ;
Sun, Shi-Gang .
CHEMICAL COMMUNICATIONS, 2015, 51 (96) :17092-17095
[8]   An improved Hummers method for eco-friendly synthesis of graphene oxide [J].
Chen, Ji ;
Yao, Bowen ;
Li, Chun ;
Shi, Gaoquan .
CARBON, 2013, 64 :225-229
[9]   Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production [J].
Chen, W. -F. ;
Wang, C. -H. ;
Sasaki, K. ;
Marinkovic, N. ;
Xu, W. ;
Muckerman, J. T. ;
Zhu, Y. ;
Adzic, R. R. .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (03) :943-951
[10]   Hydrogen-Evolution Catalysts Based on Non-Noble Metal Nickel-Molybdenum Nitride Nanosheets [J].
Chen, Wei-Fu ;
Sasaki, Kotaro ;
Ma, Chao ;
Frenkel, Anatoly I. ;
Marinkovic, Nebojsa ;
Muckerman, James T. ;
Zhu, Yimei ;
Adzic, Radoslav R. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (25) :6131-6135