NaFeTiO4 nanorod/multi-walled carbon nanotubes composite as an anode material for sodium-ion batteries with high performances in both half and full cells

被引:11
作者
Hou, Xuan
Li, Chuanchuan
Xu, Huayun [1 ]
Xu, Liqiang [1 ]
机构
[1] Shandong Univ, Key Lab Colloid & Interface Chem, Minist Educ, Jinan 250100, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
nanorods; sodium-ion batteries; multi-walled carbon nanotubes; full cell; CAFE2O4; STRUCTURE; FACILE SYNTHESIS; LITHIUM; STORAGE; NANOPARTICLES; NANOSHEETS; MECHANISM; INSERTION; CATHODES; NA2TI3O7;
D O I
10.1007/s12274-017-1569-4
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
NaFeTiO4 nanorods of high yields (with diameters in the range of 30-50 nm and lengths of up to 1-5 mu m) were synthesized by a facile sol-gel method and were utilized as an anode material for sodium-ion batteries for the first time. The obtained NaFeTiO4 nanorods exhibit a high initial discharge capacity of 294 mA center dot h center dot g(-1) at 0.2 C (1 C = 177 mA center dot g(-1)), and remain at 115 mA center dot h center dot g(-1) after 50 cycles. Furthermore, multi-walled carbon nanotubes (MWCNTs) were mechanically milled with the pristine material to obtain NaFeTiO4/MWCNTs. The NaFeTiO4/ MWCNTs electrode exhibits a significantly improved electrochemical performance with a stable discharge capacity of 150 mA center dot h center dot g(-1) at 0.2 C after 50 cycles, and remains at 125 mA center dot h center dot g(-1) at 0.5 C after 420 cycles. The NaFeTiO4/MWCNTs//Na3V2(PO4)(3)/C full cell was assembled for the first time; it displays a discharge capacity of 70 mA center dot h center dot g(-1) after 50 cycles at 0.05 C, indicating its excellent performances. X-ray photoelectron spectroscopy, ex situ X-ray diffraction, and Raman measurements were performed to investigate the initial electrochemical mechanisms of the obtained NaFeTiO4/MWCNTs.
引用
收藏
页码:3585 / 3595
页数:11
相关论文
共 46 条
[1]   NON-STOICHIOMETRIC COMPOUNDS WITH A DEFECT CAFE2O4 STRUCTURE - THE MIXED FERRITES CA1-X/2FE2-XSNXO4 AND CA1-(X+Y)/2LIYFE2-XSNXO4 [J].
ARCHAIMBAULT, F ;
ODIER, P ;
CHOISNET, J .
SOLID STATE IONICS, 1988, 28 :1357-1363
[2]   LAMELLAR COMPOUND OF SODIUM WITH GRAPHITE [J].
ASHER, RC ;
WILSON, SA .
NATURE, 1958, 181 (4606) :409-410
[3]   Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries [J].
Bi, Zhonghe ;
Paranthaman, M. Parans ;
Menchhofer, Paul A. ;
Dehoff, Ryan R. ;
Bridges, Craig A. ;
Chi, Miaofang ;
Guo, Bingkun ;
Sun, Xiao-Guang ;
Dai, Sheng .
JOURNAL OF POWER SOURCES, 2013, 222 :461-466
[4]   Facile synthesis and long cycle life of SnSb as negative electrode material for Na-ion batteries [J].
Darwiche, Ali ;
Sougrati, Moulay T. ;
Fraisse, Bernard ;
Stievano, Lorenzo ;
Monconduit, Laure .
ELECTROCHEMISTRY COMMUNICATIONS, 2013, 32 :18-21
[5]   Na3V2(PO4)3@C core-shell nanocomposites for rechargeable sodium-ion batteries [J].
Duan, Wenchao ;
Zhu, Zhiqiang ;
Li, Hao ;
Hu, Zhe ;
Zhang, Kai ;
Cheng, Fangyi ;
Chen, Jun .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (23) :8668-8675
[6]   New evidences of in situ laser irradiation effects on γ-Fe2O3 nanoparticles: a Raman spectroscopic study [J].
El Mendili, Y. ;
Bardeau, J. -F. ;
Randrianantoandro, N. ;
Gourbil, A. ;
Greneche, J. -M. ;
Mercier, A. -M. ;
Grasset, F. .
JOURNAL OF RAMAN SPECTROSCOPY, 2011, 42 (02) :239-242
[7]   Sodium and sodium-ion energy storage batteries [J].
Ellis, Brian L. ;
Nazar, Linda F. .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2012, 16 (04) :168-177
[8]   A facile synthesis of Fe3O4 nanoparticles/graphene for high-performance lithium/sodium-ion batteries [J].
Fu, Yanqing ;
Wei, Qiliang ;
Wang, Xianyou ;
Zhang, Gaixia ;
Shu, Hongbo ;
Yang, Xiukang ;
Tavares, Ana C. ;
Sun, Shuhui .
RSC ADVANCES, 2016, 6 (20) :16624-16633
[9]   High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na0.8Ni0.4Ti0.6O2 [J].
Guo, Shaohua ;
Yu, Haijun ;
Liu, Pan ;
Ren, Yang ;
Zhang, Tao ;
Chen, Mingwei ;
Ishida, Masayoshi ;
Zhou, Haoshen .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (04) :1237-1244
[10]   Fabrication of magnetic carbon nanotubes using a metal-impregnated polymer precursor [J].
Jang, JS ;
Yoon, HS .
ADVANCED MATERIALS, 2003, 15 (24) :2088-+