300 mm wafer-level hybrid bonding for Cu/interlayer dielectric bonding in vacuum

被引:19
作者
Fujino, Masahisa [1 ]
Takahashi, Kenji [1 ]
Araga, Yuuki [1 ]
Kikuchi, Katsuya [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, AIST Tsukuba Cent 1, Nanoelect Res Inst NeRI, Umezono 1-1-1, Tsukuba, Ibaraki 3058560, Japan
关键词
SURFACE-ROUGHNESS; SILICON-WAFERS; ROOM;
D O I
10.7567/1347-4065/ab4b2b
中图分类号
O59 [应用物理学];
学科分类号
摘要
Wafer bonding technology is one of the key technologies for high-density three-dimensional integration. We demonstrated 300 mm wafer-level hybrid bonding with Cu and an interlayer dielectric (ILD) layer with the design of 1 x 1 mu m(2) pads with 2 mu m pitch. In this sequence of the bonding process, the structure of Cu bonding pads was controlled to be precisely convex to the ILD layer by chemical-mechanical polishing. Then the bonding process was performed in vacuum. Lastly, the bonded wafers were annealed at 200 degrees C for the postannealing process. As a result, hybrid wafer bonding with few voids was successfully accomplished. (C) 2019 The Japan Society of Applied Physics
引用
收藏
页数:8
相关论文
共 33 条
[11]   Through silicon via: From the CMOS imager sensor wafer level package to the 3D integration [J].
Gagnard, Xavier ;
Mourier, Thierry .
MICROELECTRONIC ENGINEERING, 2010, 87 (03) :470-476
[12]   The effect of surface roughness on direct wafer bonding [J].
Gui, C ;
Elwenspoek, M ;
Tas, N ;
Gardeniers, JGE .
JOURNAL OF APPLIED PHYSICS, 1999, 85 (10) :7448-7454
[13]   Room temperature wafer level glass/glass bonding [J].
Howlader, MMR ;
Suehara, S ;
Suga, T .
SENSORS AND ACTUATORS A-PHYSICAL, 2006, 127 (01) :31-36
[14]   Ultra-fine Pitch 3D Integration Using Face-to-Face Hybrid Wafer Bonding Combined with a Via-Middle Through-Silicon-Via Process [J].
Kim, Soon-Wook ;
Detalle, Mikael ;
Peng, Lan ;
Nolmans, Philip ;
Heylen, Nancy ;
Velenis, Dimitrios ;
Miller, Andy ;
Beyer, Gerald ;
Beyne, Eric .
2016 IEEE 66TH ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE (ECTC), 2016, :1179-1185
[15]   Wafer level encapsulation of microsystems using glass frit bonding [J].
Knechtel, R ;
Wiemer, M ;
Frömel, J .
MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2006, 12 (05) :468-472
[16]   High Precision Low Temperature Direct Wafer Bonding Technology for Wafer-Level 3D ICs Manufacturing [J].
Kurz, F. ;
Plach, T. ;
Suess, J. ;
Wagenleitner, T. ;
Zinner, D. ;
Rebhan, B. ;
Dragoi, V. .
SEMICONDUCTOR WAFER BONDING: SCIENCE, TECHNOLOGY AND APPLICATIONS 14, 2016, 75 (09) :345-353
[17]   WAFER BONDING FOR SILICON-ON-INSULATOR TECHNOLOGIES [J].
LASKY, JB .
APPLIED PHYSICS LETTERS, 1986, 48 (01) :78-80
[18]   Bridging the processor-memory performance gap with 3D IC technology [J].
Liu, CC ;
Ganusov, I ;
Burtscher, M ;
Tiwari, S .
IEEE DESIGN & TEST OF COMPUTERS, 2005, 22 (06) :556-564
[19]   Galvanic Corrosion Control in Chemical Mechanical Polishing of Cu Interconnects with Ruthenium Barrier Metal Film [J].
Maruyama, Koji ;
Shiohara, Morio ;
Yamada, Kouji ;
Kondo, Seiichi ;
Saito, Shuichi .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2009, 48 (04)
[20]   ROLE OF SURFACE-MORPHOLOGY IN WAFER BONDING [J].
MASZARA, WP ;
JIANG, BL ;
YAMADA, A ;
ROZGONYI, GA ;
BAUMGART, H ;
DEKOCK, AJR .
JOURNAL OF APPLIED PHYSICS, 1991, 69 (01) :257-260