Predictions of the modified Biot-Attenborough model for the dependence of phase velocity on porosity in cancellous bone

被引:14
|
作者
Lee, Kang Il
Humphrey, Victor F.
Leighton, Timothy G.
Yoon, Suk Wang [1 ]
机构
[1] Sungkyunkwan Univ, Inst Basic Sci, Dept Phys, Suwon 440746, South Korea
[2] Kangwon Natl Univ, Dept Phys, Chunchon 200701, South Korea
[3] Univ Southampton, Inst Sound & Vibrat Res, Southampton SO17 1BJ, Hants, England
关键词
osteoporosis; cancellous bone; phase velocity; porosity; biot's theory; modified Biot-Attenborough model; ULTRASONIC WAVE-PROPAGATION; TRABECULAR BONE; MINERAL DENSITY; HUMAN CALCANEUS; ACOUSTICAL CHARACTERISTICS; MECHANICAL-PROPERTIES; STRATIFIED MODEL; FREQUENCY RANGE; ELASTIC WAVES; ATTENUATION;
D O I
10.1016/j.ultras.2007.01.012
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The modified Biot-Attenborough (MBA) model for acoustic wave propagation in porous media has been found useful to predict wave properties in cancellous bone. The present study is aimed at applying the MBA model to predict the dependence of phase velocity on porosity in cancellous bone. The MBA model predicts a phase velocity that decreases nonlinearly with porosity. The optimum values for input parameters of the MBA model, such as compressional speed cm of solid bone and phase velocity parameter s(2), were determined by comparing the predictions with previously published measurements in human calcaneus and bovine cancellous bone. The value of the phase velocity parameter s(2) = 1.23 was obtained by curve fitting to the experimental data for 53 human calcaneus samples only, assuming a compressional speed c(m) = 2500 m/s of solid bone. The root-mean-square error (RMSE) of the curve fit was 15.3 m/s. The optimized value of s2 for all 75 cancellous bone samples including 22 bovine samples was 1.42 with a value of 55 m/s for the RMSE of the curve fit. The latter fit was obtained by using of a value of cm = 3200 m/s. Although the MBA model relies on the empirical parameters determined from experimental data, it is expected that the model can be usefully employed as a practical tool in the field of clinical ultrasonic bone assessment. (c) 2007 Elsevier B. V. All rights reserved.
引用
收藏
页码:323 / 330
页数:8
相关论文
共 35 条