MST, a physiological caspase substrate, highly sensitizes apoptosis both upstream and downstream of caspase activation

被引:168
作者
Lee, KK
Ohyama, T
Yajima, N
Tsubuki, S
Yonehara, S
机构
[1] Kyoto Univ, Inst Virus Res, Sakyo Ku, Kyoto 6068507, Japan
[2] RIKEN, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan
关键词
D O I
10.1074/jbc.M005109200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The human serine/threonine kinase, mammalian STE20-like kinase (MST), is considerably homologous to the budding yeast kinases, SPS1 and STE20, throughout their kinase domains. The cellular function and physiological activation mechanism of MST is unknown except for the proteolytic cleavage-induced activation in apoptosis, In this study, we show that MST1 and MST2 are direct substrates of caspase-3 both in vivo and in vitro. cDNA cloning of MST homologues in mouse and nematode shows that caspase-cleaved sequences are evolutionarily conserved. Human MST1 has two caspase-cleavable sites, which generate biochemically distinct catalytic fragments, Staurosporine activates MST either caspase-dependently or independently, whereas Fas ligation activates it only caspase-dependently. Immunohistochemical analysis reveals that MST is localized in the cytoplasm, During Fas-mediated apoptosis, cleaved MST translocates into the nucleus before nuclear fragmentation is initiated, suggesting it functions in the nucleus. Transiently expressed MST1 induces striking morphological changes characteristic of apoptosis in both nucleus and cytoplasm, which is independent of caspase activation. Furthermore, when stably expressed in HeLa cells, MST highly sensitizes the cells to death receptor-mediated apoptosis by accelerating caspase-3 activation. These findings suggest that MST1 and MST2 play a role in apoptosis both upstream and downstream of caspase activation.
引用
收藏
页码:19276 / 19285
页数:10
相关论文
共 46 条
[1]   Nuclear export of MAP kinase (ERK) involves a MAP kinase kinase (MEK)-dependent active transport mechanism [J].
Adachi, M ;
Fukuda, M ;
Nishida, E .
JOURNAL OF CELL BIOLOGY, 2000, 148 (05) :849-856
[2]   Histone H2B phosphorylation in mammalian apoptotic cells - An association with DNA fragmentation [J].
Ajiro, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (01) :439-443
[3]   Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death [J].
Boldin, MP ;
Goncharov, TM ;
Goltsev, YV ;
Wallach, D .
CELL, 1996, 85 (06) :803-815
[4]   A CONSERVED BINDING MOTIF DEFINES NUMEROUS CANDIDATE TARGET PROTEINS FOR BOTH CDC42 AND RAC GTPASES [J].
BURBELO, PD ;
DRECHSEL, D ;
HALL, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (49) :29071-29074
[5]   The Ste20-like protein kinase, Mst1, dimerizes and contains an inhibitory domain [J].
Creasy, CL ;
Ambrose, DM ;
Chernoff, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (35) :21049-21053
[6]   CLONING AND CHARACTERIZATION OF A HUMAN PROTEIN-KINASE WITH HOMOLOGY TO STE20 [J].
CREASY, CL ;
CHERNOFF, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (37) :21695-21700
[7]   Cloning and characterization of a member of the MST subfamily of Ste20-like kinases [J].
Creasy, CL ;
Chernoff, J .
GENE, 1995, 167 (1-2) :303-306
[8]   Proteases to die for [J].
Cryns, V ;
Yuan, JY .
GENES & DEVELOPMENT, 1998, 12 (11) :1551-1570
[9]   A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD [J].
Enari, M ;
Sakahira, H ;
Yokoyama, H ;
Okawa, K ;
Iwamatsu, A ;
Nagata, S .
NATURE, 1998, 391 (6662) :43-50
[10]   Leptomycin B-sensitive nuclear export of MAPKAP kinase 2 is regulated by phosphorylation [J].
Engel, K ;
Kotlyarov, A ;
Gaestel, M .
EMBO JOURNAL, 1998, 17 (12) :3363-3371