Integral equation theory study on the phase separation in star polymer nanocomposite melts

被引:15
|
作者
Zhao, Lei [1 ]
Li, Yi-Gui [1 ]
Zhong, Chongli [1 ]
机构
[1] Beijing Univ Chem Technol, Dept Chem Engn, Key Lab Bioproc Beijing, Beijing 100029, Peoples R China
来源
JOURNAL OF CHEMICAL PHYSICS | 2007年 / 127卷 / 15期
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
D O I
10.1063/1.2795717
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The polymer reference interaction site model theory is used to investigate phase separation in star polymer nanocomposite melts. Two kinds of spinodal curves were obtained: classic fluid phase boundary for relatively low nanoparticle-monomer attraction strength and network phase boundary for relatively high nanoparticle-monomer attraction strength. The network phase boundaries are much more sensitive with nanoparticle-monomer attraction strength than the fluid phase boundaries. The interference among the arm number, arm length, and nanoparticle-monomer attraction strength was systematically investigated. When the arm lengths are short, the network phase boundary shows a marked shift toward less miscibility with increasing arm number. When the arm lengths are long enough, the network phase boundaries show opposite trends. There exists a crossover arm number value for star polymer nanocomposite melts, below which the network phase separation is consistent with that of chain polymer nanocomposite melts. However, the network phase separation shows qualitatively different behaviors when the arm number is larger than this value. (C) 2007 American Institute of Physics.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] INTEGRAL-EQUATION THEORY OF HOMOPOLYMER MELTS
    CURRO, JG
    SCHWEIZER, KS
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1990, 180 : 77 - 89
  • [12] Integral equation theory of random copolymer melts
    Sung, BJ
    Yethiraj, A
    MACROMOLECULES, 2005, 38 (05) : 2000 - 2008
  • [13] INTEGRAL-EQUATION THEORY OF POLYMER MELTS - INTRAMOLECULAR STRUCTURE, LOCAL ORDER, AND THE CORRELATION HOLE
    SCHWEIZER, KS
    CURRO, JG
    MACROMOLECULES, 1988, 21 (10) : 3070 - 3081
  • [14] Phase behavior of polymer containing colloidal dispersions: The integral equation theory
    Shusharina, NP
    Khalatur, PG
    Khokhlov, AR
    JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (16): : 7006 - 7012
  • [15] INTEGRAL-EQUATION THEORY OF POLYMER BLENDS
    SCHWEIZER, KS
    CURRO, JG
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1990, 180 : 69 - 76
  • [16] Integral equation theory of randomly coupled multiblock copolymer melts: Effect of block size on the phase behavior
    Sung, BJ
    Yethiraj, A
    JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (21):
  • [17] HELICAL SEPARATION OF POLYMER MELTS IN RING CLEARANCE - THEORY AND EXPERIMENTATION
    WINTER, HH
    KAUTSCHUK GUMMI KUNSTSTOFFE, 1973, 26 (09): : 400 - 400
  • [18] The correlations in a star molecule fluid. Integral equation theory and Monte Carlo study
    Duda, Y
    Garcia, I
    Trokhymchuk, A
    Henderson, D
    MOLECULAR PHYSICS, 2000, 98 (17) : 1287 - 1293
  • [19] Rheology and tube model theory of bimodal blends of star polymer melts
    Blottière, B
    McLeish, TCB
    Hakiki, A
    Young, RN
    Milner, ST
    MACROMOLECULES, 1998, 31 (26) : 9295 - 9304
  • [20] Viscoelastic properties of entangled star polymer melts: Comparison of theory and experiment
    Vega, DA
    Sebastian, JM
    Russel, WB
    Register, RA
    MACROMOLECULES, 2002, 35 (01) : 169 - 177