Almost Kahlerian structures determined by Riemannian structures

被引:0
作者
Matsumoto, K
Mihai, I
Miron, R
机构
[1] Yamagata Univ, Fac Educ, Dept Math, Yamagata 9908560, Japan
[2] Univ Bucharest, Fac Math, Bucharest 70109, Romania
[3] Univ Al I Cuza Iasi, Fac Math, Iasi 6600, Romania
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2003年 / 62卷 / 3-4期
关键词
foliation; non-linear connection; almost Hermitian structure; almost Kahlerian structure;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for a given Riemannian metric g on an 2n-dimensional differentiable manifold (M) over tilde which admits an n-dimensional foliation F, there exists an almost Hermitian structure (G, F) on (M) over tilde determined by the pairing (g,.F). In particular, we investigate the case when it is almost Kahlerian or Kahlerian.
引用
收藏
页码:497 / 509
页数:13
相关论文
共 11 条
[1]  
[Anonymous], GEOMETRY HIGHER ORDE
[2]  
[Anonymous], 1994, GEOMETRY LAGRANGE SP
[3]  
MATSUMOTO K, IN PRESS ALG GROUPS
[4]  
MATSUMOTO K, 1985, INT J MATH MATH SCI, V8, P69
[5]  
Matsumoto K., 2001, Rev. Roumaine Math. Pures Appl., V46, P775
[6]  
MATSUMOTO K, 2001, INT J MATH MATH SCI, V46, P775
[7]  
MIHAI I, 1996, ACAD ROMANA MEM SECF, V19, P129
[8]  
MIRON R, 1997, APPL MECH PHYSICS, V82
[9]  
MIRON R, 2001, GEOMETRY HAMILTON LA, V118
[10]  
Miron R., 1997, VECTOR BUNDLES LAGRA, V1