Cell elasticity with altered cytoskeletal architectures across multiple cell types

被引:105
|
作者
Grady, Martha E. [1 ,2 ]
Composto, Russell J. [1 ]
Eckmann, David M. [2 ]
机构
[1] Univ Penn, Sch Engn & Appl Sci, Dept Mat Sci & Engn, 3231 Walnut St, Philadelphia, PA 19104 USA
[2] Univ Penn, Sch Med, Dept Anesthesiol & Crit Care, 3620 Hamilton Walk, Philadelphia, PA 19104 USA
关键词
Atomic force microscopy; Cell mechanics; Elasticity; Cytoskeleton; Cancer; ATOMIC-FORCE MICROSCOPY; MECHANICAL-PROPERTIES; VISCOELASTIC PROPERTIES; BIOPHYSICAL PROPERTIES; ENDOTHELIAL-CELLS; SMOOTH-MUSCLE; CANCER; CHONDROCYTES; FIBROBLASTS; BIOMECHANICS;
D O I
10.1016/j.jmbbm.2016.01.022
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The cytoskeleton is primarily responsible for providing structural support, localization and transport of organelles, and intracellular trafficking. The structural support is supplied by actin filaments, microtubules, and intermediate filaments, which contribute to overall cell elasticity to varying degrees. We evaluate cell elasticity in five different cell types with drug-induced cytoskeletal derangements to probe how actin filaments and microtubules contribute to cell elasticity and whether it is conserved across cell type. Specifically, we measure elastic stiffness in primary chondrocytes, fibroblasts, endothelial cells (HUVEC), hepatocellular carcinoma cells (HUH-7), and fibrosarcoma cells (HT 1080) subjected to two cytoskeletal destabilizers: cytochalasin D and nocodazole, which disrupt actin and microtubule polymerization, respectively. Elastic stiffness is measured by atomic force microscopy (AFM) and the disruption of the cytoskeleton is confirmed using fluorescence microscopy. The two cancer cell lines showed significantly reduced elastic moduli values (similar to 0.5 kPa) when compared to the three healthy cell lines (similar to 2 kPa). Non-cancer cells whose actin filaments were disrupted using cytochalasin D showed a decrease of 60-80% in moduli values compared to untreated cells of the same origin, whereas the nocodazole-treated cells showed no change in elasticity. Overall, we demonstrate actin filaments contribute more to elastic stiffness than microtubules but this result is cell type dependent. Cancer cells behaved differently, exhibiting increased stiffness as well as stiffness variability when subjected to nocodazole. We show that disruption of microtubule dynamics affects cancer cell elasticity, suggesting therapeutic drugs targeting microtubules be monitored for significant elastic changes. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:197 / 207
页数:11
相关论文
共 50 条
  • [31] Identification of cytoskeletal markers for the different microvilli and cell types of the rat vomeronasal sensory epithelium
    Höfer, D
    Shin, DW
    Drenckhahn, D
    JOURNAL OF NEUROCYTOLOGY, 2000, 29 (03): : 147 - 156
  • [32] Computational workflow for investigating highly variable genes in single-cell RNA-seq across multiple time points and cell types
    Arora, Jantarika Kumar
    Opasawatchai, Anunya
    Teichmann, Sarah A.
    Matangkasombut, Ponpan
    Charoensawan, Varodom
    STAR PROTOCOLS, 2023, 4 (03):
  • [33] Autophagic and apoptotic types of programmed cell death exhibit different fates of cytoskeletal filaments
    Bursch, W
    Hochegger, K
    Török, L
    Marian, B
    Ellinger, A
    Hermann, RS
    JOURNAL OF CELL SCIENCE, 2000, 113 (07) : 1189 - 1198
  • [34] An atlas of active enhancers across human cell types and tissues
    Robin Andersson
    Claudia Gebhard
    Irene Miguel-Escalada
    Ilka Hoof
    Jette Bornholdt
    Mette Boyd
    Yun Chen
    Xiaobei Zhao
    Christian Schmidl
    Takahiro Suzuki
    Evgenia Ntini
    Erik Arner
    Eivind Valen
    Kang Li
    Lucia Schwarzfischer
    Dagmar Glatz
    Johanna Raithel
    Berit Lilje
    Nicolas Rapin
    Frederik Otzen Bagger
    Mette Jørgensen
    Peter Refsing Andersen
    Nicolas Bertin
    Owen Rackham
    A. Maxwell Burroughs
    J. Kenneth Baillie
    Yuri Ishizu
    Yuri Shimizu
    Erina Furuhata
    Shiori Maeda
    Yutaka Negishi
    Christopher J. Mungall
    Terrence F. Meehan
    Timo Lassmann
    Masayoshi Itoh
    Hideya Kawaji
    Naoto Kondo
    Jun Kawai
    Andreas Lennartsson
    Carsten O. Daub
    Peter Heutink
    David A. Hume
    Torben Heick Jensen
    Harukazu Suzuki
    Yoshihide Hayashizaki
    Ferenc Müller
    Alistair R. R. Forrest
    Piero Carninci
    Michael Rehli
    Albin Sandelin
    Nature, 2014, 507 : 455 - 461
  • [35] Identifying regulatory loci across 38 lung cell types
    Nature Genetics, 2024, 56 : 561 - 562
  • [36] Learning and Control in Motor Cortex across Cell Types and Scales
    Economo, Michael N.
    Komiyama, Takaki
    Kubota, Yoshiyuki
    Schiller, Jackie
    JOURNAL OF NEUROSCIENCE, 2024, 44 (40):
  • [37] Identifying regulatory loci across 38 lung cell types
    Natri, Heini M.
    Banovich, Nicholas E.
    NATURE GENETICS, 2024, 56 (04) : 561 - 562
  • [38] A transcriptomic and epigenomic atlas of cell types across the macaque brain
    Chiou, Kenneth L.
    Huang, Xingfan
    Bohlen, Martin O.
    Tremblay, Sebastien
    O'Day, Diana R.
    Spurrell, Cailyn H.
    Gogate, Aishwarya A.
    Zintel, Trisha M.
    Decasien, Alex R.
    Andrews, Madeline G.
    Martinez, Melween I.
    Starita, Lea M.
    Montague, Michael J.
    Platt, Michael L.
    Shendure, Jay
    Snyder-Mackler, Noah
    AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY, 2023, 180 : 30 - 31
  • [39] Uncovering specific mechanisms across cell types in dynamical models
    Hauber, Adrian L.
    Rosenblatt, Marcus
    Timmer, Jens
    PLOS COMPUTATIONAL BIOLOGY, 2023, 19 (09)
  • [40] Transcriptomic diversity of cell types across the adult human brain
    Siletti, Kimberly
    Hodge, Rebecca
    Albiach, Alejandro Mossi
    Lee, Ka Wai
    Ding, Song-Lin
    Hu, Lijuan
    Lonnerberg, Peter
    Bakken, Trygve
    Casper, Tamara
    Clark, Michael
    Dee, Nick
    Gloe, Jessica
    Hirschstein, Daniel
    Shapovalova, Nadiya V.
    Keene, C. Dirk
    Nyhus, Julie
    Tung, Herman
    Yanny, Anna Marie
    Arenas, Ernest
    Lein, Ed S.
    Linnarsson, Sten
    SCIENCE, 2023, 382 (6667) : 175 - +