Congruences for arithmetic functions

被引:0
作者
Ma, Wu-Xia [1 ,2 ]
Chen, Yong-Gao [1 ,2 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
[2] Nanjing Normal Univ, Inst Math, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Arithmetic functions; Congruences; Divisor function; Sum-of-divisors function; Euler's totient function; Colored partitions; VALUES; EULER;
D O I
10.1007/s11139-021-00454-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by congruences for partitions, we study congruences for three well known arithmetic functions: the divisor function d(n), the sum-of-divisors function sigma(n) and Euler's totient function phi(n). In this paper, for f(n) = d(n), sigma(n), phi(n) we determine all a, b, c, m such that f(an + b) equivalent to c (mod m) for all nonnegative integers n. These results are useful to find congruences for generalized colored partitions.
引用
收藏
页码:651 / 666
页数:16
相关论文
共 14 条
[1]  
[Anonymous], 1980, MAT LAPOK
[2]   Coincidences in the values of the Euler and Carmichael functions [J].
Banks, William D. ;
Friedlander, John B. ;
Luca, Florian ;
Pappalardi, Francesco ;
Shparlinski, Igor E. .
ACTA ARITHMETICA, 2006, 122 (03) :207-234
[3]   Diophantine equations involving Euler's totient function [J].
Chen, Yong-Gao ;
Tian, Hao .
ACTA ARITHMETICA, 2019, 191 (01) :33-65
[4]   ON LOCALLY REPEATED VALUES OF CERTAIN ARITHMETIC FUNCTIONS .3. [J].
ERDOS, P ;
POMERANCE, C ;
SARKOZY, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 101 (01) :1-7
[5]  
Erdos P, 1936, P CAMB PHILOS SOC, V32, P530
[6]  
Erdos P, 1944, B AM MATH SOC, V50, P881, DOI [10.1090/S0002-9904-1944-08257-8, DOI 10.1090/S0002-9904-1944-08257-8]
[7]  
Erds P., 1952, Proc. London Math. Soc., V2, P257
[8]   Divisors of the Euler and Carmichael functions [J].
Ford, Kevin ;
Hu, Yong .
ACTA ARITHMETICA, 2008, 133 (03) :199-208
[9]   THE DIVISOR FUNCTION AT CONSECUTIVE INTEGERS [J].
HEATHBROWN, DR .
MATHEMATIKA, 1984, 31 (61) :141-149
[10]   On the independence of σ(φ(n)) and φ(σ(n)) [J].
Hernane, Mohand-Ouamar ;
Luca, Florian .
ACTA ARITHMETICA, 2009, 138 (04) :337-346