EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTION FOR NONLINEAR FRACTIONAL Q-DIFFERENCE EQUATION WITH INTEGRAL BOUNDARY CONDITIONS

被引:11
作者
Guo, Caixia [1 ]
Guo, Jianmin [1 ]
Kang, Shugui [1 ]
Li, Huapeng [1 ]
机构
[1] Shanxi Datong Univ, Sch Math & Stat, Xingyun St, Datong 037009, Peoples R China
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2020年 / 10卷 / 01期
基金
中国国家自然科学基金;
关键词
Fractional q-difference; integral boundary value problem; fixed point theorem; positive solution; ORDERS;
D O I
10.11948/20190055
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies a class of nonlinear fractional q-difference equations with integral boundary conditions. By exploiting the properties of Green's function and two fixed point theorems for a sum operator, the existence and uniqueness of positive solutions for the boundary value problem are established. Iterative schemes for approximating the solutions are also obtained. Explicit examples are given to illustrate main results.
引用
收藏
页码:153 / 164
页数:12
相关论文
共 23 条
[1]  
Agarwal R.P., 2015, Dyn. Contin. Discret (I), V22, P1
[2]   CERTAIN FRACTIONAL Q-INTEGRALS AND Q-DERIVATIVES [J].
AGARWAL, RP .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1969, 66 :365-&
[3]  
Ahmad B, 2016, B MATH SOC SCI MATH, V59, P119
[4]   Impulsive fractional q-integro-difference equations with separated boundary conditions [J].
Ahmad, Bashir ;
Ntouyas, Sotiris K. ;
Tariboon, Jessada ;
Alsaedi, Ahmed ;
Alsulami, Hamed H. .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 281 :199-213
[5]   Boundary Value Problems of Nonlinear Fractional q-Difference (Integral) Equations with Two Fractional Orders and Four-point Nonlocal Integral Boundary Conditions [J].
Ahmad, Bashir ;
Nieto, Juan J. ;
Alsaedi, Ahmed ;
Al-Hutami, Hana .
FILOMAT, 2014, 28 (08) :1719-1736
[6]   Existence of solutions for nonlinear fractional q-difference integral equations with two fractional orders and nonlocal four-point boundary conditions [J].
Ahmad, Bashir ;
Nieto, Juan J. ;
Alsaedi, Ahmed ;
Al-Hutami, Hana .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2014, 351 (05) :2890-2909
[7]   SOME FRACTIONAL Q-INTEGRALS AND Q-DERIVATIVES [J].
ALSALAM, WA .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1966, 15 :135-&
[8]  
[Anonymous], 2015, ADV DIFFER EQU
[9]  
Bohner M., 2012, Sarajevo J. Math, V8, P355, DOI [10.5644/SJM.08.2.14, DOI 10.5644/SJM.08.2.14]
[10]   UNIQUENESS OF SOLUTIONS FOR AN INTEGRAL BOUNDARY VALUE PROBLEM WITH FRACTIONAL Q-DIFFERENCES [J].
Cui, Yaqiong ;
Kang, Shugui ;
Chen, Huiqin .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2018, 8 (02) :524-531