Almost sure asymptotics for the continuous parabolic Anderson model

被引:38
作者
Gärtner, J
König, W
Molchanov, SA
机构
[1] Tech Univ Berlin, FB Math, D-10623 Berlin, Germany
[2] Univ N Carolina, Dept Math, Charlotte, NC 28223 USA
关键词
D O I
10.1007/PL00008754
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the parabolic Anderson problem partial derivative (t)u = kappa Deltau = xi (x)u on R+ X R-d with initial condition u(0, x) = 1. Here kappa > 0 is a diffusion constant and xi is a random homogeneous potential. We concentrate on the two important cases of a Gaussian potential and a shot noise Poisson potential. Under some mild regularity assumptions, we derive the second-order term of the almost sure asymptotics of u(t, 0) as t --> infinity.
引用
收藏
页码:547 / 573
页数:27
相关论文
共 8 条
[1]  
ADLER RJ, 1990, HAYWARD I MATH STAT
[2]  
[Anonymous], 1994, Saint-Flour XXII-1992, LNM 1581
[3]  
Carmona R.A., 1994, AMS MEMOIR, V518
[4]   STATIONARY PARABOLIC ANDERSON MODEL AND INTERMITTENCY [J].
CARMONA, RA ;
MOLCHANOV, SA .
PROBABILITY THEORY AND RELATED FIELDS, 1995, 102 (04) :433-453
[5]   Parabolic problems for the Anderson model II. Second-order asymptotics and structure of high peaks [J].
Gartner, J ;
Molchanov, SA .
PROBABILITY THEORY AND RELATED FIELDS, 1998, 111 (01) :17-55
[6]   Correlation structure of intermittency in the parabolic Anderson model [J].
Gärtner, J ;
den Hollander, F .
PROBABILITY THEORY AND RELATED FIELDS, 1999, 114 (01) :1-54
[7]   Moment asymptotics for the continuous parabolic Anderson model [J].
Gärtner, J ;
König, W .
ANNALS OF APPLIED PROBABILITY, 2000, 10 (01) :192-217
[8]  
SZNITMAN AS, 1998, BROWNIAN MOTION OBST, DOI DOI 10.1007/978-3-662-11281-6