CyCoSeg: A Cyclic Collaborative Framework for Automated Medical Image Segmentation

被引:9
作者
Medley, Daniela [1 ]
Santiago, Carlos [1 ]
Nascimento, Jacinto C. [1 ]
机构
[1] Inst Super Tecn, Inst Sistemas & Robot, P-1049001 Lisbon, Portugal
关键词
Image segmentation; Collaboration; Shape; Deformable models; Semantics; Three-dimensional displays; Standards; Segmentation; image processing and computer vision; semantic networks; machine learning; LEFT-VENTRICULAR SEGMENTATION; ACTIVE SHAPE MODELS; APPEARANCE; RESOURCE; TRACKING; NODULES; HEART;
D O I
10.1109/TPAMI.2021.3113077
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep neural networks have been tremendously successful at segmenting objects in images. However, it has been shown they still have limitations on challenging problems such as the segmentation of medical images. The main reason behind this lower success resides in the reduced size of the object in the image. In this paper we overcome this limitation through a cyclic collaborative framework, CyCoSeg. The proposed framework is based on a deep active shape model (D-ASM), which provides prior information about the shape of the object, and a semantic segmentation network (SSN). These two models collaborate to reach the desired segmentation by influencing each other: SSN helps D-ASM identify relevant keypoints in the image through an Expectation Maximization formulation, while D-ASM provides a segmentation proposal that guides the SSN. This cycle is repeated until both models converge. Extensive experimental evaluation shows CyCoSeg boosts the performance of the baseline models, including several popular SSNs, while avoiding major architectural modifications. The effectiveness of our method is demonstrated on the left ventricle segmentation on two benchmark datasets, where our approach achieves one of the most competitive results in segmentation accuracy. Furthermore, its generalization is demonstrated for lungs and kidneys segmentation in CT scans.
引用
收藏
页码:8167 / 8182
页数:16
相关论文
共 83 条
[1]  
American College of Cardiology Foundation Task Force on Expert Consensus Documents, 2010, J Am Coll Cardiol, V55, P2614, DOI [10.1161/CIR.0b013e3181d44a8f, 10.1016/j.jacc.2009.11.011]
[2]   Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI [J].
Andreopoulos, Alexander ;
Tsotsos, John K. .
MEDICAL IMAGE ANALYSIS, 2008, 12 (03) :335-357
[3]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[4]   A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI [J].
Avendi, M. R. ;
Kheradvar, Arash ;
Jafarkhani, Hamid .
MEDICAL IMAGE ANALYSIS, 2016, 30 :108-119
[5]   Multi-atlas segmentation with augmented features for cardiac MR images [J].
Bai, Wenjia ;
Shi, Wenzhe ;
Ledig, Christian ;
Rueckert, Daniel .
MEDICAL IMAGE ANALYSIS, 2015, 19 (01) :98-109
[6]   An Exploration of 2D and 3D Deep Learning Techniques for Cardiac MR Image Segmentation [J].
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Pollefeys, Marc ;
Konukoglu, Ender .
STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART: ACDC AND MMWHS CHALLENGES, 2018, 10663 :111-119
[7]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[8]   Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation [J].
Brosch, Tom ;
Tang, Lisa Y. W. ;
Yoo, Youngjin ;
Li, David K. B. ;
Traboulsee, Anthony ;
Tam, Roger .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) :1229-1239
[9]   AdaEn-Net: An ensemble of adaptive 2D-3D Fully Convolutional Networks for medical image segmentation [J].
Calisto, Maria Baldeon ;
Lai-Yuen, Susana K. .
NEURAL NETWORKS, 2020, 126 :76-94
[10]  
Chen H, 2016, AAAI CONF ARTIF INTE, P1160