Discrete optimal Bayesian classification with error-conditioned sequential sampling

被引:24
|
作者
Broumand, Ariana [1 ]
Esfahani, Mohammad Shahrokh [1 ,2 ]
Yoon, Byung-Jun [1 ,2 ,3 ]
Dougherty, Edward R. [1 ,2 ]
机构
[1] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
[2] Texas A&M Univ, CBGSE, College Stn, TX 77843 USA
[3] HBKU, CSE, Doha, Qatar
关键词
Optimal Bayesian classifier; Controlled sampling; Prior knowledge; MEAN-SQUARE ERROR; MINIMUM EXPECTED ERROR; GAUSSIAN MODELS; OPTIMAL CLASSIFIERS; PERFORMANCE; MISCLASSIFICATION; PROBABILITY; ESTIMATOR; KNOWLEDGE; FRAMEWORK;
D O I
10.1016/j.patcog.2015.03.023
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
When in possession of prior knowledge concerning the feature-label distribution, in particular, when it is known that the feature-label distribution belongs to an uncertainty class of distributions governed by a prior distribution, this prior knowledge can be used in conjunction with the training data to construct the optimal Bayesian classifier (OBC), whose performance is, on average, optimal among all classifiers relative to the posterior distribution derived from the prior distribution and the data. Typically in classification theory it is assumed that sampling is performed randomly in accordance with the prior probabilities on the classes and this has heretofore been true in the case of OBC. In the present paper we propose to forego random sampling and utilize the prior knowledge and previously collected data to determine which class to sample from at each step of the sampling. Specifically, we choose to sample from the class that leads to the smallest expected classification error with the addition of the new sample point. We demonstrate the superiority of the resulting nonrandom sampling procedure to random sampling on both synthetic data and data generated from known biological pathways. (C) 2015 Published by Elsevier Ltd.
引用
收藏
页码:3766 / 3782
页数:17
相关论文
共 16 条
  • [1] Sequential Sampling for Optimal Bayesian Classification of Sequencing Count Data
    Broumand, Ariana
    Dadaneh, Siamak Zamani
    2018 CONFERENCE RECORD OF 52ND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2018, : 1357 - 1361
  • [2] Optimal Bayesian Classification With Missing Values
    Dadaneh, Siamak Zamani
    Dougherty, Edward R.
    Qian, Xiaoning
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (16) : 4182 - 4192
  • [3] Incorporation of Biological Pathway Knowledge in the Construction of Priors for Optimal Bayesian Classification
    Esfahani, Mohammad Shahrokh
    Dougherty, Edward R.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2014, 11 (01) : 202 - 218
  • [4] Detecting Multivariate Gene Interactions in RNA-Seq Data Using Optimal Bayesian Classification
    Knight, Jason M.
    Ivanov, Ivan
    Triff, Karen
    Chapkin, Robert S.
    Dougherty, Edward R.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2018, 15 (02) : 484 - 493
  • [5] Medical image modality classification using discrete Bayesian networks
    Arias, Jacinto
    Martinez-Gomez, Jesus
    Gamez, Jose A.
    de Herrera, Alba G. Seco
    Mueller, Henning
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2016, 151 : 61 - 71
  • [6] MCMC implementation of the optimal Bayesian classifier for non-Gaussian models: model-based RNA-Seq classification
    Knight, Jason M.
    Ivanov, Ivan
    Dougherty, Edward R.
    BMC BIOINFORMATICS, 2014, 15
  • [7] Bounds for the Bayes error in classification: a Bayesian approach using discriminant analysis
    Pham-Gia, T.
    Turkkan, N.
    Bekker, A.
    STATISTICAL METHODS AND APPLICATIONS, 2007, 16 (01): : 7 - 26
  • [8] Bounds for the Bayes Error in Classification: A Bayesian Approach Using Discriminant Analysis
    T. Pham-Gia
    N. Turkkan
    A. Bekker
    Statistical Methods and Applications, 2007, 16 : 7 - 26
  • [9] Optimal Bayesian Classification and Its Application to Gene Regulatory Networks
    Dalton, Lori
    Dougherty, Edward R.
    2012 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS (GENSIPS), 2012, : 164 - 167
  • [10] Moments and root-mean-square error of the Bayesian MMSE estimator of classification error in the Gaussian model
    Zollanvari, Amin
    Dougherty, Edward R.
    PATTERN RECOGNITION, 2014, 47 (06) : 2178 - 2192