Big Data and machine learning in radiation oncology: State of the art and future prospects

被引:196
作者
Bibault, Jean-Emmanuel [1 ,2 ]
Giraud, Philippe [1 ]
Burgun, Anita [2 ,3 ]
机构
[1] Paris Descartes Univ, Georges Pompidou European Hosp, AP HP, Sorbonne Paris Cite,Radiat Oncol Dept, Paris, France
[2] Paris Descartes Univ, Sorbonne Paris Cite, INSERM, Team Informat Sci Support Personalized Med 22,UMR, Paris, France
[3] Paris Descartes Univ, Georges Pompidou European Hosp, AP HP, Sorbonne Paris Cite,Biomed Informat & Publ Hlth D, Paris, France
关键词
Radiation oncology; Big Data; Predictive model; Machine learning; ARTIFICIAL NEURAL-NETWORK; DOSE-VOLUME; BREAST-CANCER; LUNG-CANCER; NECK-CANCER; THERAPY; RADIOTHERAPY; PREDICTION; OUTCOMES; HEAD;
D O I
10.1016/j.canlet.2016.05.033
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Precision medicine relies on an increasing amount of heterogeneous data. Advances in radiation oncology, through the use of CT Scan, dosimetry and imaging performed before each fraction, have generated a considerable flow of data that needs to be integrated. In the same time, Electronic Health Records now provide phenotypic profiles of large cohorts of patients that could be correlated to this information. In this review, we describe methods that could be used to create integrative predictive models in radiation oncology. Potential uses of machine learning methods such as support vector machine, artificial neural networks, and deep learning are also discussed. (C) 2016 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:110 / 117
页数:8
相关论文
共 63 条
[1]   Rapid-Learning System for Cancer Care [J].
Abernethy, Amy P. ;
Etheredge, Lynn M. ;
Ganz, Patricia A. ;
Wallace, Paul ;
German, Robert R. ;
Neti, Chalapathy ;
Bach, Peter B. ;
Murphy, Sharon B. .
JOURNAL OF CLINICAL ONCOLOGY, 2010, 28 (27) :4268-4274
[2]  
[Anonymous], SYST NOM MED CLIN TE
[3]  
[Anonymous], 2009, ICML
[4]   Predicting dose-volume histograms for organs-at-risk in IMRT planning [J].
Appenzoller, Lindsey M. ;
Michalski, Jeff M. ;
Thorstad, Wade L. ;
Mutic, Sasa ;
Moore, Kevin L. .
MEDICAL PHYSICS, 2012, 39 (12) :7446-7461
[5]   Personalized radiation therapy and biomarker-driven treatment strategies: a systematic review [J].
Bibault, Jean-Emmanuel ;
Fumagalli, Ingrid ;
Ferte, Charles ;
Chargari, Cyrus ;
Soria, Jean-Charles ;
Deutsch, Eric .
CANCER AND METASTASIS REVIEWS, 2013, 32 (3-4) :479-492
[6]   Artificial neural network model of survival in patients treated with irradiation with and without concurrent chemotherapy for advanced carcinoma of the head and neck [J].
Bryce, TJ ;
Dewhirst, MW ;
Floyd, CE ;
Hars, V ;
Brizel, DM .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1998, 41 (02) :339-345
[7]   Translational research platforms integrating clinical and omics data: a review of publicly available solutions [J].
Canuel, Vincent ;
Rance, Bastien ;
Avillach, Paul ;
Degoulet, Patrice ;
Burgun, Anita .
BRIEFINGS IN BIOINFORMATICS, 2015, 16 (02) :280-290
[8]   Five critical elements to ensure the precision medicine [J].
Chen, Chengshui ;
He, Mingyan ;
Zhu, Yichun ;
Shi, Lin ;
Wang, Xiangdong .
CANCER AND METASTASIS REVIEWS, 2015, 34 (02) :313-318
[9]   How Will Big Data Impact Clinical Decision Making and Precision Medicine in Radiation Therapy? [J].
Chen, Ronald C. ;
Gabriel, Peter E. ;
Kavanagh, Brian D. ;
McNutt, Todd R. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2016, 95 (03) :880-884
[10]   A neural network model to predict lung radiation-induced pneumonitis [J].
Chen, Shifeng ;
Zhou, Sumin ;
Zhang, Junan ;
Yin, Fang-Fang ;
Marks, Lawrence B. ;
Das, Shiva K. .
MEDICAL PHYSICS, 2007, 34 (09) :3420-3427