Fast Algorithms for Diameter-Optimally Augmenting Paths and Trees

被引:2
作者
Grosse, Ulrike [1 ]
Knauer, Christian [1 ]
Stehn, Fabian [1 ]
Gudmundsson, Joachim [2 ]
Smid, Michiel [3 ]
机构
[1] Univ Bayreuth, Inst Angew Informat, Univ Str 30, D-95447 Bayreuth, Germany
[2] Univ Sydney, Sch Informat Technol, J12, Sydney, NSW 2006, Australia
[3] Carleton Univ, Sch Comp Sci, 1125 Colonel Dr, Ottawa, ON K1S 5B6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Computational geometry; geometric graphs; diameter; approximation; parametric search; optimization; BOUNDED-DIAMETER;
D O I
10.1142/S0129054119500060
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the problem of augmenting an n-vertex graph embedded in a metric space, by inserting one additional edge in order to minimize the diameter of the resulting graph. We present exact algorithms for the cases when (i) the input graph is a path, running in O(n log(3) n) time, and (ii) the input graph is a tree, running in O(n(2) log n) time. We also present an algorithm for paths that computes a (1 + epsilon)-approximation in O(n + 1/epsilon(3)) time.
引用
收藏
页码:293 / 313
页数:21
相关论文
共 28 条
[1]  
Alon N, 2000, J GRAPH THEOR, V35, P161, DOI 10.1002/1097-0118(200011)35:3<161::AID-JGT1>3.0.CO
[2]  
2-Y
[3]  
[Anonymous], 2008, COMPUTATIONAL GEOMET, DOI DOI 10.1007/978-3-540-77974-2
[4]   Improved approximability and non-approximability results for graph diameter decreasing problems [J].
Bilo, Davide ;
Guala, Luciano ;
Proietti, Guido .
THEORETICAL COMPUTER SCIENCE, 2012, 417 :12-22
[5]   Augmenting trees to meet biconnectivity and diameter constraints [J].
Chepoi, V ;
Vaxes, Y .
ALGORITHMICA, 2002, 33 (02) :243-262
[6]  
CHUNG FRK, 1984, J GRAPH THEOR, V8, P511, DOI 10.1002/jgt.3190080408
[7]  
Cormen T. H., 1990, Introduction to Algorithms
[8]   Minimizing the Continuous Diameter when Augmenting a Tree with a Shortcut [J].
De Carufel, Jean-Lou ;
Grimm, Carsten ;
Schirra, Stefan ;
Smid, Michiel .
ALGORITHMS AND DATA STRUCTURES: 15TH INTERNATIONAL SYMPOSIUM, WADS 2017, 2017, 10389 :301-312
[9]  
Dodis Y., 1999, Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, P750, DOI 10.1145/301250.301447
[10]   How to decrease the diameter of triangle-free graphs [J].
Erdos, P ;
Gyárfás, A ;
Ruszinkó, M .
COMBINATORICA, 1998, 18 (04) :493-501