Organic template-free synthesis of high-quality CHA type zeolite membranes for carbon dioxide separation '
被引:51
作者:
Jang, Eunhee
论文数: 0引用数: 0
h-index: 0
机构:
Korea Univ, Coll Engn, Dept Chem & Biol Engn, 145 Anam Ro, Seoul 02841, South KoreaKorea Univ, Coll Engn, Dept Chem & Biol Engn, 145 Anam Ro, Seoul 02841, South Korea
Jang, Eunhee
[1
]
Hong, Sungwon
论文数: 0引用数: 0
h-index: 0
机构:
Korea Univ, Coll Engn, Dept Chem & Biol Engn, 145 Anam Ro, Seoul 02841, South KoreaKorea Univ, Coll Engn, Dept Chem & Biol Engn, 145 Anam Ro, Seoul 02841, South Korea
Hong, Sungwon
[1
]
Kim, Eunjoo
论文数: 0引用数: 0
h-index: 0
机构:
Korea Univ, Coll Engn, Dept Chem & Biol Engn, 145 Anam Ro, Seoul 02841, South KoreaKorea Univ, Coll Engn, Dept Chem & Biol Engn, 145 Anam Ro, Seoul 02841, South Korea
Kim, Eunjoo
[1
]
Choi, Nakwon
论文数: 0引用数: 0
h-index: 0
机构:
KIST, Ctr BioMicrosyst, Brain Sci Inst, Hwarang Ro 14 Gil, Seoul 02792, South KoreaKorea Univ, Coll Engn, Dept Chem & Biol Engn, 145 Anam Ro, Seoul 02841, South Korea
Choi, Nakwon
[2
]
Cho, Sung June
论文数: 0引用数: 0
h-index: 0
机构:
Chonnam Natl Univ, Dept Chem Engn, 77 Yongbong Ro, Gwangju 61186, South KoreaKorea Univ, Coll Engn, Dept Chem & Biol Engn, 145 Anam Ro, Seoul 02841, South Korea
Cho, Sung June
[3
]
Choi, Jungkyu
论文数: 0引用数: 0
h-index: 0
机构:
Korea Univ, Coll Engn, Dept Chem & Biol Engn, 145 Anam Ro, Seoul 02841, South KoreaKorea Univ, Coll Engn, Dept Chem & Biol Engn, 145 Anam Ro, Seoul 02841, South Korea
Choi, Jungkyu
[1
]
机构:
[1] Korea Univ, Coll Engn, Dept Chem & Biol Engn, 145 Anam Ro, Seoul 02841, South Korea
[2] KIST, Ctr BioMicrosyst, Brain Sci Inst, Hwarang Ro 14 Gil, Seoul 02792, South Korea
[3] Chonnam Natl Univ, Dept Chem Engn, 77 Yongbong Ro, Gwangju 61186, South Korea
Microporous chabazite (CHA) zeolite is very promising for CO2 capture because of its appropriate pores with molecular dimensions for the preferential adsorption of CO2 molecules. Herein, CHA type zeolite particles and membranes were prepared by using a seeded growth method in the absence of an organic structure directing agent (OSDA) or template. After substantial effort to find appropriate and reliable conditions for obtaining continuous CHA type zeolite membranes, it was recognized that the formation of these membranes is a highly sensitive function of the Si/Al ratio in the synthetic precursor. Using the appropriate Si/Al ratio of similar to 50, OSDA-free CHA type zeolite membranes were manufactured with high reproducibility. The resulting OSDA-free CHA type zeolite membranes showed maximum CO2/N-2 and CO2/CH4 separation factors of similar to 12.5 +/- 3.8 and similar to 28.8 +/- 6.9, respectively, with a moderate CO2 permeance of similar to 1 x 10(-7) mol m(-2) s(-1) Pa-1. Notably, under more realistic wet conditions (i.e., in the presence of H2O vapor), the separation performance at temperatures above 75 degrees C was comparable to that obtained under dry conditions, although permeation was hindered below 50 degrees C, apparently due to the strong adsorption of H2O vapor.