APPLICATION OF ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM MODEL ON TRAFFIC FLOW OF VEHICLES AT A SIGNALIZED ROAD INTERSECTIONS

被引:0
作者
Olayode, O. I. [1 ]
Tartibu, L. K. [1 ]
Okwu, M. O. [1 ]
机构
[1] Univ Johannesburg, Mech & Ind Engn Technol, Johannesburg, South Africa
来源
PROCEEDINGS OF ASME 2021 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION (IMECE2021), VOL 9 | 2021年
关键词
Traffic congestion; Adaptive neuro-fuzzy inference system; Signalized Road intersection; Traffic flow; LOGIC-CONTROLLER; PREDICTION; CITY;
D O I
暂无
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
In recent years, most traffic accidents and congestions usually occur at road intersections in urban areas where the vehicle speed is high. This has necessitated the need for intelligent road transport systems and high-level algorithms to unravel the problem. In this study, the South Africa Road transportation system has been used as a case study to address traffic flow solutions at signalized road intersections using traffic flow variables such as traffic density, speed of vehicles, and traffic volume as decision variables. This paper focuses on using a hybrid creative algorithm based on signalized traffic flow to address the constant repetitive traffic congestion problem. The proposed hybrid algorithm is the adaptive neuro-fuzzy inference system (ANFIS). The speed of vehicles within the investigation period, the traffic density of the road network, and the traffic volume of vehicles on the road were used as input and output variables, respectively. Triangular membership function and Gaussian membership function were used for input and output variables, and rules were developed based on available traffic flow parameters. The result of the ANFIS model showed a training and testing performance of 0.8722 and 0.9370, respectively. This training and testing results showed that the ANFIS model is an effective model for optimizing traffic flow at signalized road intersections.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] An adaptive neuro-fuzzy inference system for sleep spindle detection
    Liang, Sheng-Fu
    Kuo, Chih-En
    Hu, Yu-Han
    Chen, Chun-Yu
    Li, Yu-Hung
    2012 INTERNATIONAL CONFERENCE ON FUZZY THEORY AND ITS APPLICATIONS (IFUZZY2012), 2012, : 369 - 373
  • [32] Text Summarization Using Adaptive Neuro-Fuzzy Inference System
    Warule, Pratiksha D.
    Sawarkar, S. D.
    Gulati, Archana
    COMPUTING AND NETWORK SUSTAINABILITY, 2019, 75
  • [33] A hybrid of adaptive neuro-fuzzy inference system and genetic algorithm
    Varnamkhasti, M. Jalali
    Hassan, Nasruddin
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2013, 25 (03) : 793 - 796
  • [34] Adaptive Neuro-Fuzzy Inference System for Texture Image Classification
    Kuncoro, B. Ari
    Suharjito
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON AUTOMATION, COGNITIVE SCIENCE, OPTICS, MICRO ELECTRO-MECHANICAL SYSTEM, AND INFORMATION TECHNOLOGY (ICACOMIT), 2015, : 196 - 200
  • [35] Glaucoma detection using adaptive neuro-fuzzy inference system
    Huang, Mei-Ling
    Chen, Hsin-Yi
    Huang, Jian-Jun
    EXPERT SYSTEMS WITH APPLICATIONS, 2007, 32 (02) : 458 - 468
  • [36] An adaptive neuro-fuzzy inference system for bridge risk assessment
    Wang, Ying-Ming
    Elhag, Taha M. S.
    EXPERT SYSTEMS WITH APPLICATIONS, 2008, 34 (04) : 3099 - 3106
  • [37] Application of adaptive neuro-fuzzy inference system for solubility prediction of carbon dioxide in polymers
    Khajeh, Aboozar
    Modarress, Hamid
    Rezaee, Babak
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (03) : 5728 - 5732
  • [38] Reliability Modeling Using an Adaptive Neuro-Fuzzy Inference System: Gas Turbine Application
    Hadroug, Nadji
    Hafaifa, Ahmed
    Iratni, Abdelhamid
    Guemana, Mouloud
    FUZZY INFORMATION AND ENGINEERING, 2021, 13 (02) : 154 - 183
  • [39] Face Recognition System using Adaptive Neuro-Fuzzy Inference System
    Chandrasekhar, Tadi
    Kumar, Ch. Sumanth
    2017 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER, AND OPTIMIZATION TECHNIQUES (ICEECCOT), 2017, : 448 - 455
  • [40] An adaptive neuro-fuzzy interface system model for traffic classification and noise prediction
    Sharma, A.
    Vijay, R.
    Bodhe, G. L.
    Malik, L. G.
    SOFT COMPUTING, 2018, 22 (06) : 1891 - 1902