Patterns and complexity of multiplicative functions

被引:6
作者
Buttkewitz, Y. [1 ]
Elsholtz, C. [2 ]
机构
[1] Univ London, Dept Math, Egham TW20 OEX, Surrey, England
[2] Graz Univ Technol, Inst Math A, A-8010 Graz, Austria
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2011年 / 84卷
关键词
CONSECUTIVE INTEGERS; LIOUVILLE FUNCTION; SUMS;
D O I
10.1112/jlms/jdr026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
I. Schur and G. Schur proved that, for all completely multiplicative functions f : N -> {-1, 1}, with the exception of two character-like functions, there is always a solution of f(n) = f(n + 1) = f(n + 2) = 1. Hildebrand proved that for the Liouville lambda-function each of the eight possible sign combinations (lambda(n),lambda(n + 1),lambda(n + 2)) occurs infinitely often. We prove for completely multiplicative functions f : N -> {-1, 1}, satisfying certain necessary conditions, that any sign pattern (epsilon(1), epsilon(2), epsilon(3), epsilon(4)), epsilon(i) is an element of {-1, 1}, occurs for infinitely many 4-term arithmetic progressions (f(n), f(n + d), f(n + 2d), f(n + 3d)). The proof introduces graph theory and new combinatorial methods to the subject.
引用
收藏
页码:578 / 594
页数:17
相关论文
共 23 条
[1]  
BAKER RC, 1991, J LOND MATH SOC, V43, P193
[2]  
BALOG A, 2007, ARXIVMATH0702389V1
[3]  
Borwein P, 2009, P AM MATH SOC, V137, P1303
[4]  
BRUDERN J, 2009, ESSAYS HONOUR K ROTH
[5]  
Cassaigne J, 2000, ACTA ARITH, V95, P343
[6]  
Cassaigne J, 1999, ACTA ARITH, V87, P367
[7]  
Chowla S., 1965, Mathematics and its Applications
[8]   On the oscillations of multiplicative functions taking values ±1 [J].
Croot, ES .
JOURNAL OF NUMBER THEORY, 2003, 98 (01) :184-194
[9]  
Elliott P.D.T.A., 1992, NOTAS SOC MAT CHILE, V11, P1
[10]   Multiplicative functions on arithmetic progressions. VII: Large moduli [J].
Elliott, PDTA .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 66 :14-28