Locally equivalent quasifree states and index theory

被引:2
作者
Bourne, Chris [1 ,2 ]
机构
[1] Tohoku Univ, WPI AIMR, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
[2] RIKEN iTIEMS, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
关键词
index theory; SPT phases; coarse geometry; operator algebras; K-THEORY; QUASIEQUIVALENCE; DUALITY;
D O I
10.1088/1751-8121/ac508b
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider quasifree ground states of Araki's self-dual canonical anti-commutation relation algebra from the viewpoint of index theory and symmetry protected topological (SPT) phases. We first review how Clifford module indices characterise a topological obstruction to connect pairs of symmetric gapped ground states. This construction is then generalised to give invariants in KO*(A(t)) with A a C*(,t)-algebra of allowed deformations. When A = C*(X), the Roe algebra of a coarse space X, and we restrict to gapped ground states that are locally equivalent with respect X, a K-homology class is also constructed. The coarse assembly map relates these two classes and clarifies the relevance of K-homology to free-fermionic SPT phases.
引用
收藏
页数:38
相关论文
共 48 条
  • [1] Bulk-Boundary Correspondence for Disordered Free-Fermion Topological Phases
    Alldridge, Alexander
    Max, Christopher
    Zirnbauer, Martin R.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 377 (03) : 1761 - 1821
  • [2] Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures
    Altland, A
    Zirnbauer, MR
    [J]. PHYSICAL REVIEW B, 1997, 55 (02): : 1142 - 1161
  • [3] ON A CSTAR-ALGEBRA APPROACH TO PHASE-TRANSITION IN THE TWO-DIMENSIONAL ISING-MODEL
    ARAKI, H
    EVANS, DE
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 91 (04) : 489 - 503
  • [4] Araki H., 1970, Publ. Res. Inst. Math. Sci. Kyoto, V6, P385, DOI DOI 10.2977/PRIMS/1195193913
  • [5] Atiyah M., 1964, TOPOLOGY, V3, P3, DOI 10.1016/0040-9383(64)90003-5
  • [6] BAAJ S, 1983, CR ACAD SCI I-MATH, V296, P875
  • [7] A non-commutative framework for topological insulators
    Bourne, C.
    Carey, A. L.
    Rennie, A.
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2016, 28 (02)
  • [8] The KO-valued spectral flow for skew-adjoint Fredholm operators
    Bourne, Chris
    Carey, Alan L.
    Lesch, Matthias
    Rennie, Adam
    [J]. JOURNAL OF TOPOLOGY AND ANALYSIS, 2022, 14 (02) : 505 - 556
  • [9] On Z2-indices for ground states of fermionic chains
    Bourne, Chris
    Schulz-Baldes, Hermann
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2020, 32 (09)
  • [10] The Cayley transform in complex, real and graded K-theory
    Bourne, Chris
    Kellendonk, Johannes
    Rennie, Adam
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2020, 31 (09)