Automated surveillance systems for healthcare-associated infections: results from a European survey and experiences from real-life utilization

被引:22
作者
Verberk, J. D. M. [1 ,2 ,3 ]
Aghdassi, S. J. S. [4 ,5 ,6 ,7 ]
Abbas, M. [8 ,9 ]
Naucler, P. [10 ,11 ]
Gubbels, S. [12 ]
Maldonado, N. [13 ]
Palacios-Baena, Z. R. [13 ]
Johansson, A. F. [14 ,15 ]
Gastmeier, P. [4 ,5 ,6 ]
Behnke, M. [4 ,5 ,6 ]
van Rooden, S. M. [2 ,3 ]
van Mourik, M. S. M. [1 ]
机构
[1] Univ Med Ctr Utrecht, Dept Med Microbiol & Infect Prevent, Utrecht, Netherlands
[2] Univ Med Ctr Utrecht, Julius Ctr Hlth Sci & Primary Care, Utrecht, Netherlands
[3] Ctr Infect Dis Control, Natl Inst Publ Hlth & Environm, Dept Epidemiol & Surveillance, Bilthoven, Netherlands
[4] Charite Univ Med Berlin, Inst Hyg & Environm Med, Berlin, Germany
[5] Free Univ Berlin, Berlin, Germany
[6] Humboldt Univ, Berlin, Germany
[7] Charite Univ Med Berlin, Berlin Inst Hlth, BIH Biomed Innovat Acad, BIH Charite Digital Clinician Scientist Program, Charitepl 1, D-10117 Berlin, Germany
[8] Geneva Univ Hosp, Infect Control Programme, Geneva, Switzerland
[9] Fac Med, Geneva, Switzerland
[10] Karolinska Inst, Dept Med Solna, Div Infect Dis, Stockholm, Sweden
[11] Karolinska Univ Hosp, Dept Infect Dis, Stockholm, Sweden
[12] Statens Serum Inst, Dept Infect Dis Preparedness, Copenhagen, Denmark
[13] Hosp Univ Virgen Macarena, Inst Biomed Seville IBIS, Unit Infect Dis Clin Microbiol & Prevent Med, Seville, Spain
[14] Umea Univ, Dept Clin Microbiol, Umea, Sweden
[15] Umea Univ, Lab Mol Infect Med MIMS, Umea, Sweden
关键词
Surveillance; Automation; Healthcare-associated infection; SURGICAL SITE INFECTIONS; ELECTRONIC SURVEILLANCE; NOSOCOMIAL INFECTION; VALIDATION; ALGORITHMS; CRITERIA;
D O I
10.1016/j.jhin.2021.12.021
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Background: As most automated surveillance (AS) methods to detect healthcare associated infections (HAIs) have been developed and implemented in research settings, information about the feasibility of large-scale implementation is scarce. Aim: To describe key aspects of the design of AS systems and implementation in European institutions and hospitals. Methods: An online survey was distributed via e-mail in February/March 2019 among (i) PRAISE (Providing a Roadmap for Automated Infection Surveillance in Europe) network members; (ii) corresponding authors of peer-reviewed European publications on existing AS systems; and (iii) the mailing list of national infection prevention and control focal points of the European Centre for Disease Prevention and Control. Three AS systems from the survey were selected, based on quintessential features, for in-depth review focusing on implementation in practice. Findings: Through the survey and the review of three selected AS systems, notable differences regarding the methods, algorithms, data sources, and targeted HAIs were identified. The majority of AS systems used a classification algorithm for semi-automated surveillance and targeted HAIs were mostly surgical site infections, urinary tract infections, sepsis, or other bloodstream infections. AS systems yielded a reduction of workload for hospital staff. Principal barriers of implementation were strict data security regulations as well as creating and maintaining an information technology infrastructure. Conclusion: AS in Europe is characterized by heterogeneity in methods and surveillance targets. To allow for comparisons and encourage homogenization, future publications on AS systems should provide detailed information on source data, methods, and the state of implementation. 2022 The Author(s). Published by Elsevier Ltd on behalf of The Healthcare Infection Society. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:35 / 43
页数:9
相关论文
共 46 条
  • [1] Impact of participation in a surgical site infection surveillance network: results from a large international cohort study
    Abbas, M.
    de Kraker, M. E. A.
    Aghayev, E.
    Astagneau, P.
    Aupee, M.
    Behnke, M.
    Bull, A.
    Choi, H. J.
    de Greeff, S. C.
    Elgohari, S.
    Gastmeier, P.
    Harrison, W.
    Koek, M. B. G.
    Lamagni, T.
    Limon, E.
    Lower, H. L.
    Lyytikainen, O.
    Marimuthu, K.
    Marquess, J.
    McCann, R.
    Prantner, I
    Presterl, E.
    Pujol, M.
    Reilly, J.
    Roberts, C.
    Segagni Lusignani, L.
    Si, D.
    Szilagyi, E.
    Tanguy, J.
    Tempone, S.
    Troillet, N.
    Worth, L. J.
    Pittet, D.
    Harbarth, S.
    [J]. JOURNAL OF HOSPITAL INFECTION, 2019, 102 (03) : 267 - 276
  • [2] Factors related to the accurate application of NHSN surveillance definitions for CAUTI and CLABSI in Texas hospitals: A cross-sectional survey
    Adams, Jennifer
    Mauldin, Teri
    Yates, Karen
    Zumwalt, Christi
    Ashe, Tera
    Cervantes, Diana
    Tao, Meng-Hua
    [J]. AMERICAN JOURNAL OF INFECTION CONTROL, 2022, 50 (01) : 111 - 113
  • [3] Comparison of Two Computer Algorithms To Identify Surgical Site Infections
    Apte, Mandar
    Landers, Timothy
    Furuya, Yoko
    Hyman, Sandra
    Larson, Elaine
    [J]. SURGICAL INFECTIONS, 2011, 12 (06) : 459 - 464
  • [4] What is Machine Learning? A Primer for the Epidemiologist
    Bi, Qifang
    Goodman, Katherine E.
    Kaminsky, Joshua
    Lessler, Justin
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2019, 188 (12) : 2222 - 2239
  • [5] Agreement among Healthcare Professionals in Ten European Countries in Diagnosing Case-Vignettes of Surgical-Site Infections
    Birgand, Gabriel
    Lepelletier, Didier
    Baron, Gabriel
    Barrett, Steve
    Breier, Ann-Christin
    Buke, Cagri
    Markovic-Denic, Ljiljana
    Gastmeier, Petra
    Kluytmans, Jan
    Lyytikainen, Outi
    Sheridan, Elizabeth
    Szilagyi, Emese
    Tacconelli, Evelina
    Troillet, Nicolas
    Ravaud, Philippe
    Lucet, Jean-Christophe
    [J]. PLOS ONE, 2013, 8 (07):
  • [6] Natural Language Processing for Real-Time Catheter-Associated Urinary Tract Infection Surveillance: Results of a Pilot Implementation Trial
    Branch-Elliman, Westyn
    Strymish, Judith
    Kudesia, Valmeek
    Rosen, Amy K.
    Gupta, Kalpana
    [J]. INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY, 2015, 36 (09) : 1004 - 1010
  • [7] Reduction of surgical site infection rates associated with active surveillance
    Brandt, C.
    Sohr, D.
    Behnke, M.
    Daschner, F.
    Rueden, H.
    Gastmeier, P.
    [J]. INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY, 2006, 27 (12) : 1347 - 1351
  • [8] Data elements and validation methods used for electronic surveillance of health care-associated infections: A systematic review
    Cato, Kenrick D.
    Cohen, Bevin
    Larson, Elaine
    [J]. AMERICAN JOURNAL OF INFECTION CONTROL, 2015, 43 (06) : 600 - 605
  • [9] Description and validation of a new automated surveillance system for Clostridium difficile in Denmark
    Chaine, M.
    Gubbels, S.
    Voldstedlund, M.
    Kristensen, B.
    Nielsen, J.
    Andersen, L. P.
    Ellermann-Eriksen, S.
    Engberg, J.
    Holm, A.
    Olesen, B.
    Schonheyder, H. C.
    Ostergaard, C.
    Ethelberg, S.
    Molbak, K.
    [J]. EPIDEMIOLOGY AND INFECTION, 2017, 145 (12) : 2594 - 2602
  • [10] Validation of semiautomated surgical site infection surveillance using electronic screening algorithms in 38 surgery categories
    Cho, Sun Young
    Chung, Doo Ryeon
    Choi, Jong Rim
    Kim, Doo Mi
    Kim, Si-Ho
    Huh, Kyungmin
    Kang, Cheol-In
    Peck, Kyong Ran
    [J]. INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY, 2018, 39 (08) : 931 - 935