Split-spectrum amplitude-decorrelation angiography with optical coherence tomography

被引:1507
作者
Jia, Yali [1 ]
Tan, Ou [1 ]
Tokayer, Jason [2 ]
Potsaid, Benjamin [3 ,4 ]
Wang, Yimin [1 ]
Liu, Jonathan J. [3 ]
Kraus, Martin F. [3 ,5 ]
Subhash, Hrebesh [1 ]
Fujimoto, James G. [3 ]
Hornegger, Joachim [5 ]
Huang, David [1 ]
机构
[1] Oregon Hlth & Sci Univ, Casey Eye Inst, Portland, OR 97239 USA
[2] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
[3] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[4] Thorlabs Inc, Adv Imaging Grp, Newton, NJ 07860 USA
[5] Univ Erlangen Nurnberg, Pattern Recognit Lab, D-91058 Erlangen, Germany
关键词
RETINAL BLOOD-FLOW; SWEPT-SOURCE; VASCULAR PERFUSION; VELOCITY; CIRCULATION; MOTION; EYE; MICROCIRCULATION; CAPILLARIES; PERFORMANCE;
D O I
10.1364/OE.20.004710
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Amplitude decorrelation measurement is sensitive to transverse flow and immune to phase noise in comparison to Doppler and other phase-based approaches. However, the high axial resolution of OCT makes it very sensitive to the pulsatile bulk motion noise in the axial direction. To overcome this limitation, we developed split-spectrum amplitude-decorrelation angiography (SSADA) to improve the signal-to-noise ratio (SNR) of flow detection. The full OCT spectrum was split into several narrower bands. Inter-B-scan decorrelation was computed using the spectral bands separately and then averaged. The SSADA algorithm was tested on in vivo images of the human macula and optic nerve head. It significantly improved both SNR for flow detection and connectivity of microvascular network when compared to other amplitude-decorrelation algorithms. (C) 2012 Optical Society of America
引用
收藏
页码:4710 / 4725
页数:16
相关论文
共 54 条
[1]   In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography [J].
An, Lin ;
Wang, Ruikang K. .
OPTICS EXPRESS, 2008, 16 (15) :11438-11452
[2]   High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography [J].
An, Lin ;
Subhush, Hrebesh M. ;
Wilson, David J. ;
Wang, Ruikang K. .
JOURNAL OF BIOMEDICAL OPTICS, 2010, 15 (02)
[3]  
Arend O, 1997, INVEST OPHTH VIS SCI, V38, P1819
[4]   Phase-stabilized optical frequency domain imaging at 1-μm for the measurement of blood flow in the human choroid [J].
Braaf, Boy ;
Vermeer, Kocnraad A. ;
Sicam, Victor Arni D. P. ;
van Zeeburg, Elsbeth ;
van Meurs, Jan C. ;
de Boer, Johannes F. .
OPTICS EXPRESS, 2011, 19 (21) :20886-20903
[5]  
Bressler Neil M, 2004, JAMA, V291, P1900, DOI 10.1001/jama.291.15.1900
[6]  
Chalam K. V., 2011, BASIC CLIN SCI COURS, P79
[7]   Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography [J].
Chen, ZP ;
Milner, TE ;
Srinivas, S ;
Wang, XJ ;
Malekafzali, A ;
vanGemert, MJC ;
Nelson, JS .
OPTICS LETTERS, 1997, 22 (14) :1119-1121
[8]   Optical coherence tomography using a frequency-tunable optical source [J].
Chinn, SR ;
Swanson, EA ;
Fujimoto, JG .
OPTICS LETTERS, 1997, 22 (05) :340-342
[9]   Sensitivity advantage of swept source and Fourier domain optical coherence tomography [J].
Choma, MA ;
Sarunic, MV ;
Yang, CH ;
Izatt, JA .
OPTICS EXPRESS, 2003, 11 (18) :2183-2189
[10]  
Dainty J.C., 1984, Laser Speckle and Related Phenomena