共 386 条
Biosynthesis of the modified tetrapyrroles?the pigments of life
被引:198
作者:
Bryant, Donald A.
[1
,2
]
Hunter, C. Neil
[3
]
Warren, Martin J.
[4
,5
]
机构:
[1] Penn State Univ, Dept Biochem & Mol Biol, University Pk, PA 16802 USA
[2] Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA
[3] Univ Sheffield, Dept Mol Biol & Biotechnol, Sheffield S10 2TN, S Yorkshire, England
[4] Univ Kent, Sch Biosci, Canterbury CT2 7NJ, Kent, England
[5] Quadram Inst Biosci, Norwich Res Pk, Norwich NR4 7UQ, Norfolk, England
基金:
英国生物技术与生命科学研究理事会;
关键词:
heme;
chlorophyll;
biosynthesis;
adenosylcobalamin (AdoCbl);
photosynthesis;
bacteriochlorophyll;
bilin;
tetrapyrrole;
uroporphyrinogen III;
vitamin B12;
cobalamin;
coenzyme F430;
heme d1;
5-aminolevulinic acid;
precorrin;
GREEN SULFUR BACTERIA;
ADENOSYL-L-METHIONINE;
COBYRINIC ACID A;
C-DIAMIDE;
DELTA-AMINOLEVULINIC-ACID;
COENZYME B-12 SYNTHESIS;
CYSG GENE ENCODES;
INDEPENDENT PROTOCHLOROPHYLLIDE REDUCTASE;
BACTERIOCHLOROPHYLL-C BIOSYNTHESIS;
GENETICALLY-ENGINEERED SYNTHESIS;
PROTOPORPHYRINOGEN-IX OXIDASE;
D O I:
10.1074/jbc.REV120.006194
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Modified tetrapyrroles are large macrocyclic compounds, consisting of diverse conjugation and metal chelation systems and imparting an array of colors to the biological structures that contain them. Tetrapyrroles represent some of the most complex small molecules synthesized by cells and are involved in many essential processes that are fundamental to life on Earth, including photosynthesis, respiration, and catalysis. These molecules are all derived from a common template through a series of enzyme-mediated transformations that alter the oxidation state of the macrocycle and also modify its size, its side-chain composition, and the nature of the centrally chelated metal ion. The different modified tetrapyrroles include chlorophylls, hemes, siroheme, corrins (including vitamin B-12), coenzyme F-430, heme d(1), and bilins. After nearly a century of study, almost all of the more than 90 different enzymes that synthesize this family of compounds are now known, and expression of reconstructed operons in heterologous hosts has confirmed that most pathways are complete. Aside from the highly diverse nature of the chemical reactions catalyzed, an interesting aspect of comparative biochemistry is to see how different enzymes and even entire pathways have evolved to perform alternative chemical reactions to produce the same end products in the presence and absence of oxygen. Although there is still much to learn, our current understanding of tetrapyrrole biogenesis represents a remarkable biochemical milestone that is summarized in this review.
引用
收藏
页码:6888 / 6925
页数:38
相关论文