Bivalent tethering of SspB to ClpXP is required for efficient substrate delivery: A protein-design study

被引:52
作者
Bolon, DN
Wah, DA
Hersch, GL
Baker, TA
Sauer, RT
机构
[1] MIT, Dept Biol, Cambridge, MA 02139 USA
[2] MIT, Howard Hughes Med Inst, Cambridge, MA 02139 USA
关键词
D O I
10.1016/S1097-2765(04)00027-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
SspB homodimers deliver ssrA-tagged substrates to ClpXP for degradation. SspB consists of a substrate binding domain and an unstructured tail with a ClpX binding module (XB). Using computational design, we engineered an SspB heterodimer whose subunits did not form homodimers. Experiments with the designed molecule and variants lacking one or two tails demonstrate that both XB modules are required for strong binding and efficient substrate delivery to ClpXP. Assembly of stable SspB-substrate-ClpX delivery complexes requires the coupling of weak tethering interactions between ClpX and the SspB XB modules as well as interactions between ClpX and the substrate degradation tag. The ClpX hexamer contains three XB binding sites, one per N domain dimer, and thus binds strongly to just one SspB dimer at a time. Because different adaptor proteins use the same tethering sites in ClpX, those which employ bivalent tethering, like SspB, will compete more effectively for substrate delivery to ClpXP.
引用
收藏
页码:443 / 449
页数:7
相关论文
共 21 条
[1]   Design, activity, and structure of a highly specific artificial endonuclease [J].
Chevalier, BS ;
Kortemme, T ;
Chadsey, MS ;
Baker, D ;
Monnat, RJ ;
Stoddard, BL .
MOLECULAR CELL, 2002, 10 (04) :895-905
[2]   De novo protein design: Fully automated sequence selection [J].
Dahiyat, BI ;
Mayo, SL .
SCIENCE, 1997, 278 (5335) :82-87
[3]   THE DEAD-END ELIMINATION THEOREM AND ITS USE IN PROTEIN SIDE-CHAIN POSITIONING [J].
DESMET, J ;
DEMAEYER, M ;
HAZES, B ;
LASTERS, I .
NATURE, 1992, 356 (6369) :539-542
[4]   Solution structure of the dimeric zinc binding domain of the chaperone ClpX [J].
Donaldson, LW ;
Wojtyra, U ;
Houry, WA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (49) :48991-48996
[5]   Targeted delivery of an ssrA-tagged substrate by the adaptor protein SspB to its cognate AAA plus protein ClpX [J].
Dougan, DA ;
Weber-Ban, E ;
Bukau, B .
MOLECULAR CELL, 2003, 12 (02) :373-380
[6]   Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals [J].
Flynn, JM ;
Neher, SB ;
Kim, YI ;
Sauer, RT ;
Baker, TA .
MOLECULAR CELL, 2003, 11 (03) :671-683
[7]   The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system [J].
Gottesman, S ;
Roche, E ;
Zhou, YN ;
Sauer, RT .
GENES & DEVELOPMENT, 1998, 12 (09) :1338-1347
[8]   Automated design of specificity in molecular recognition [J].
Havranek, JJ ;
Harbury, PB .
NATURE STRUCTURAL BIOLOGY, 2003, 10 (01) :45-52
[9]  
Hoskins JR, 2002, ADV PROTEIN CHEM, V59, P413
[10]   Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA [J].
Keiler, KC ;
Waller, PRH ;
Sauer, RT .
SCIENCE, 1996, 271 (5251) :990-993