XNOR-SRAM: In-Memory Computing SRAM Macro for Binary/Ternary Deep Neural Networks

被引:308
作者
Yin, Shihui [1 ]
Jiang, Zhewei [2 ]
Seo, Jae-Sun [1 ]
Seok, Mingoo [2 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
[2] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
关键词
Random access memory; Hardware; System-on-chip; Transistors; Computer architecture; Neural networks; Complexity theory; Binary weights; deep neural networks (DNNs); ensemble learning; in-memory computing (IMC); SRAM; ternary activations;
D O I
10.1109/JSSC.2019.2963616
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present XNOR-SRAM, a mixed-signal in-memory computing (IMC) SRAM macro that computes ternary-XNOR-and-accumulate (XAC) operations in binary/ternary deep neural networks (DNNs) without row-by-row data access. The XNOR-SRAM bitcell embeds circuits for ternary XNOR operations, which are accumulated on the read bitline (RBL) by simultaneously turning on all 256 rows, essentially forming a resistive voltage divider. The analog RBL voltage is digitized with a column-multiplexed 11-level flash analog-to-digital converter (ADC) at the XNOR-SRAM periphery. XNOR-SRAM is prototyped in a 65-nm CMOS and achieves the energy efficiency of 403 TOPS/W for ternary-XAC operations with 88.8% test accuracy for the CIFAR-10 data set at 0.6-V supply. This marks 33x better energy efficiency and 300x better energy-delay product than conventional digital hardware and also represents among the best tradeoff in energy efficiency and DNN accuracy.
引用
收藏
页码:1733 / 1743
页数:11
相关论文
共 38 条
[1]  
[Anonymous], 2018, IEEE INT SOL STAT CI
[2]  
[Anonymous], J ARTIF INTELL RES
[3]  
[Anonymous], 2018, ARXIV181104047
[4]  
[Anonymous], P EUR C COMP VIS ECC
[5]  
[Anonymous], AIM1687 MIT CTR BIOL
[6]  
[Anonymous], P IEEE S VLSI CIRC J
[7]  
[Anonymous], BINARYNET PYTORCH
[8]   An Always-On 3.8 μJ/86% CIFAR-10 Mixed-Signal Binary CNN Processor With All Memory on Chip in 28-nm CMOS [J].
Bankman, Daniel ;
Yang, Lita ;
Moons, Bert ;
Verhelst, Marian ;
Murmann, Boris .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2019, 54 (01) :158-172
[9]   CONV-SRAM: An Energy-Efficient SRAM With In-Memory Dot-Product Computation for Low-Power Convolutional Neural Networks [J].
Biswas, Avishek ;
Chandrakasan, Anantha P. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2019, 54 (01) :217-230
[10]   An 8T-SRAM for variability tolerance and low-voltage operation in high-performance caches [J].
Chang, Leland ;
Montoye, Robert K. ;
Nakamura, Yutaka ;
Batson, Kevin A. ;
Eickemeyer, Richard J. ;
Dennard, Robert H. ;
Haensch, Wilfried ;
Jamsek, Damir .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2008, 43 (04) :956-963