Electrochemical Conversion of Copper-Based Hierarchical Micro/Nanostructures to Copper Metal Nanoparticles and Their Testing in Nitrate Sensing

被引:30
作者
Andreoli, Enrico [1 ]
Annibaldi, Valeria [1 ]
Rooney, Denise A. [1 ]
Liao, Kang-Shyang [2 ]
Alley, Nigel J. [2 ,3 ]
Curran, Seamus A. [2 ]
Breslin, Carmel B. [1 ]
机构
[1] Natl Univ Ireland Maynooth, Dept Chem, Maynooth, Co Kildare, Ireland
[2] Univ Houston, Inst NanoEnergy, Houston, TX 77204 USA
[3] Dublin City Univ, Sch Phys Sci, Dublin 9, Ireland
基金
爱尔兰科学基金会;
关键词
Polypyrrole; Copper nanoparticles; Multiwall carbon nanotubes; Nitrate sensing; CARBON NANOTUBES; ELECTRICAL-PROPERTIES; CONDUCTING POLYMER; ION-TRANSPORT; POLYPYRROLE; COMPOSITE; ELECTRODES; DEPOSITION; PRETREATMENT; CAPACITANCE;
D O I
10.1002/elan.201100105
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Metallic copper nanoparticles (CuNP) are formed from the reduction of hierarchical copper-based micro/nanostructures previously electrodeposited on polypyrrole-polystyrene sulfonate (PPy-PSS) thin films. The application of a high reduction potential causes the erosion of the micro/nanostructures nanosheets and the formation of CuNP. The CuNP are used in a series of preliminary tests in order to assess their performance in the sensing of nitrate. The sensing performance is improved with the introduction of polyethyleneimine-functionalized multiwall carbon nanotubes (MWNT-PEI) to the PPy-PSS films. Electrochemical impedance spectroscopy studies show that the nanotubes increased the electronic conductivity of the reduced films. The limit of detection of the PPy-PSS-MWNT-PEI-CuNP nanocomposite is 30 mu M nitrate. The materials need further development and optimization work in order to be applied as sensors.
引用
收藏
页码:2164 / 2173
页数:10
相关论文
共 45 条
[1]   SPECTROSCOPIC AND ELECTROCHEMICAL STUDIES OF CHARGE-TRANSFER IN MODIFIED ELECTRODES [J].
ALBERY, WJ ;
CHEN, Z ;
HORROCKS, BR ;
MOUNT, AR ;
WILSON, PJ ;
BLOOR, D ;
MONKMAN, AT ;
ELLIOTT, CM .
FARADAY DISCUSSIONS, 1989, 88 :247-+
[2]   A TRANSMISSION-LINE MODEL FOR MODIFIED ELECTRODES AND THIN-LAYER CELLS [J].
ALBERY, WJ ;
ELLIOTT, CM ;
MOUNT, AR .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1990, 288 (1-2) :15-34
[3]   Electrochemical Deposition of Hierarchical Micro/Nanostructures of Copper Hydroxysulfates on Polypyrrole-Polystyrene Sulfonate Films [J].
Andreoli, Enrico ;
Rooney, Denise A. ;
Redington, Wynette ;
Gunning, Robert ;
Breslin, Carmel B. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (17) :8725-8734
[4]   Insight into the electroreduction of nitrate ions at a copper electrode, in neutral solution, after determination of their diffusion coefficient by electrochemical impedance spectroscopy [J].
Aouina, Nizar ;
Cachet, Hubert ;
Debiemme-chouvy, Catherine ;
Thi Tuyet Mai Tran .
ELECTROCHIMICA ACTA, 2010, 55 (24) :7341-7345
[5]   MOLECULAR RECTIFIERS [J].
AVIRAM, A ;
RATNER, MA .
CHEMICAL PHYSICS LETTERS, 1974, 29 (02) :277-283
[6]   ELECTROCHEMICAL PRETREATMENT OF CARBON ELECTRODES AS A FUNCTION OF POTENTIAL, PH, AND TIME [J].
BEILBY, AL ;
SASAKI, TA ;
STERN, HM .
ANALYTICAL CHEMISTRY, 1995, 67 (05) :976-980
[7]   The use of nanoparticles in electroanalysis: an updated review [J].
Campbell, Fallyn W. ;
Compton, Richard G. .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2010, 396 (01) :241-259
[8]  
Chen GZ, 2000, ADV MATER, V12, P522, DOI 10.1002/(SICI)1521-4095(200004)12:7<522::AID-ADMA522>3.0.CO
[9]  
2-S
[10]   Physical doping of a conjugated polymer with carbon nanotubes [J].
Coleman, JN ;
Curran, S ;
Dalton, AB ;
Davey, AP ;
Mc Carthy, B ;
Blau, W ;
Barklie, RC .
SYNTHETIC METALS, 1999, 102 (1-3) :1174-1175