Mediastinal atlas creation from 3-D chest computed tomography images: Application to automated detection and station mapping of lymph nodes

被引:36
作者
Feuerstein, Marco [1 ,2 ]
Glocker, Ben [1 ,3 ]
Kitasaka, Takayuki [4 ]
Nakamura, Yoshihiko [2 ]
Iwano, Shingo [5 ]
Mori, Kensaku [2 ]
机构
[1] Tech Univ Munich, Munich, Germany
[2] Nagoya Univ, Grad Sch Informat Sci, Nagoya, Aichi 4648601, Japan
[3] Microsoft Res, Cambridge, England
[4] Aichi Inst Technol, Fac Informat Sci, Toyota 47003, Japan
[5] Nagoya Univ, Grad Sch Med, Nagoya, Aichi 4648601, Japan
关键词
Probabilistic atlas; Mediastinum; Lymph node map; Lung cancer; Deformable registration; LUNG-CANCER; TARGET VOLUME; CT; SEGMENTATION; REGISTRATION; HEAD; MODELS; CLASSIFICATION; CONSTRUCTION; DEFINITION;
D O I
10.1016/j.media.2011.05.005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One important aspect of lung cancer staging is the assessment of mediastinal lymph nodes in 3-D chest computed tomography (CT) images. In the current clinical routine this is done manually by analyzing the 3-D CT image slice by slice to find nodes, evaluate them quantitatively, and assign labels to them for describing the clinical and pathologic extent of metastases. In this paper we present a method to automate the process of lymph node detection and labeling by creation of a mediastinal average image and a novel lymph node atlas containing probability maps for mediastinal, aortic, and N1 nodes. Utilizing a fast deformable registration approach to match the atlas with CT images of new patients, our method can maintain an acceptable runtime. In comparison to previously published methods for mediastinal lymph node detection and labeling it also shows a good sensitivity and positive predictive value. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:63 / 74
页数:12
相关论文
共 68 条
[1]  
[Anonymous], 2008, EUROPEAN HOSP, V17, P26
[2]  
Antiga Luca., 2007, The Insight Journal
[3]   Is it possible TO differentiate malignant mediastinal nodes from benign nodes by size? Reevaluation by CT, transesophageal echocardiography, and nodal specimen [J].
Arita, T ;
Matsumoto, T ;
Kuramitsu, T ;
Kawamura, M ;
Matsunaga, N ;
Sugi, K ;
Esato, K .
CHEST, 1996, 110 (04) :1004-1008
[4]   CT-based definition of thoracic lymph node stations: An atlas from the University of Michigan [J].
Chapet, O ;
Kong, FM ;
Quint, LE ;
Chang, AC ;
Ten Haken, RK ;
Eisbruch, A ;
Hayman, JA .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2005, 63 (01) :170-178
[5]   Atlas-based delineation of lymph node levels in head and neck computed tomography images [J].
Commowick, Olivier ;
Gregoire, Vincent ;
Malandain, Gregoire .
RADIOTHERAPY AND ONCOLOGY, 2008, 87 (02) :281-289
[6]   CT demonstration of the 1996 AJCC-UICC regional lymph node classification for lung cancer staging [J].
Cymbalista, M ;
Waysberg, A ;
Zacharias, C ;
Ajavon, Y ;
Riquet, M ;
Rebibo, G ;
Grenier, P .
RADIOGRAPHICS, 1999, 19 (04) :899-899
[7]   Segmentation of neck lymph nodes in CT datasets with stable 3D mass-spring models: Segmentation of neck lymph nodes [J].
Dornheim, Jana ;
Seim, Heiko ;
Preim, Bernhard ;
Hertel, Ilka ;
Strauss, Giero .
ACADEMIC RADIOLOGY, 2007, 14 (11) :1389-1399
[8]  
Dornheim L., 2008, BILDVERARBEITUNG MED, P308
[9]  
Eicke D., 2005, THESIS OTTOVONGUERIC
[10]   New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1) [J].
Eisenhauer, E. A. ;
Therasse, P. ;
Bogaerts, J. ;
Schwartz, L. H. ;
Sargent, D. ;
Ford, R. ;
Dancey, J. ;
Arbuck, S. ;
Gwyther, S. ;
Mooney, M. ;
Rubinstein, L. ;
Shankar, L. ;
Dodd, L. ;
Kaplan, R. ;
Lacombe, D. ;
Verweij, J. .
EUROPEAN JOURNAL OF CANCER, 2009, 45 (02) :228-247